[1]

Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24

doi: 10.1016/j.cell.2016.08.029
[2]

Egamberdieva D, Davranov K, Wirth S, Hashem A, Abd Allah EF. 2017. Impact of soil salinity on the plant-growth – promoting and biological control abilities of root associated bacteria. Saudi Journal of Biological Sciences 24:1601−08

doi: 10.1016/j.sjbs.2017.07.004
[3]

Islam W, Waheed A, Naveed H, Zeng F. 2022. MicroRNAs mediated plant responses to salt stress. Cells 11:2806

doi: 10.3390/cells11182806
[4]

Flowers TJ, Colmer TD. 2008. Salinity tolerance in halophytes. New Phytologist 179:945−63

doi: 10.1111/j.1469-8137.2008.02531.x
[5]

Wang Y, Dong F, Chen H, Xu T, Tang M. 2023. Effects of arbuscular mycorrhizal fungus on sodium and chloride ion channels of Casuarina glauca under salt stress. International Journal of Molecular Sciences 24:3680

doi: 10.3390/ijms24043680
[6]

Hao Z, Fan C, Cheng T, Su Y, Wei Q, et al. 2015. Genome-wide identification, characterization and evolutionary analysis of long intergenic noncoding RNAs in cucumber. PLoS One 10:e0121800

doi: 10.1371/journal.pone.0121800
[7]

Wang J, Meng X, Dobrovolskaya OB, Orlov YL, Chen M. 2017. Non-coding RNAs and their roles in stress response in plants. Genomics, Proteomics & Bioinformatics 15:301−12

doi: 10.1016/j.gpb.2017.01.007
[8]

Yu Y, Zhang Y, Chen X, Chen Y. 2019. Plant noncoding RNAs: hidden players in development and stress responses. Annual Review of Cell and Developmental Biology 35:407−31

doi: 10.1146/annurev-cellbio-100818-125218
[9]

Wang Y, Fan X, Lin F, He G, Terzaghi W, et al. 2014. Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proceedings of the National Academy of Sciences of the United States of America 111:10359−64

doi: 10.1073/pnas.1409457111
[10]

Zhu P, Wang Y, Qin N, Wang F, Wang J, et al. 2016. Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis. Proceedings of the National Academy of Sciences of the United States of America 113:11967−72

doi: 10.1073/pnas.1614852113
[11]

Chen X, Sun Y, Cai R, Wang G, Shu X, et al. 2018. Long noncoding RNA: multiple players in gene expression. BMB Reports 51:280−89

doi: 10.5483/BMBRep.2018.51.6.025
[12]

Sun Y, Hao P, Lv X, Tian J, Wang Y, et al. 2020. A long non-coding apple RNA, MSTRG. 85814.11, acts as a transcriptional enhancer of SAUR32 and contributes to the Fe-deficiency response. The Plant Journal 103:53−67

doi: 10.1111/tpj.14706
[13]

Ben Amor B, Wirth S, Merchan F, Laporte P, d'Aubenton-Carafa Y, et al. 2009. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Research 19:57−69

doi: 10.1101/gr.080275.108
[14]

Yuan J, Li J, Yang Y, Tan C, Zhu Y, et al. 2018. Stress-responsive regulation of long non-coding RNA polyadenylation in Oryza sativa. The Plant Journal 93:814−27

doi: 10.1111/tpj.13804
[15]

Cui J, Luan Y, Jiang N, Bao H, Meng J. 2017. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. The Plant Journal 89:577−89

doi: 10.1111/tpj.13408
[16]

Li L, Eichten SR, Shimizu R, Petsch K, Yeh CT, et al. 2014. Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biology 15:R40

doi: 10.1186/gb-2014-15-2-r40
[17]

Zhao T, Tao X, Feng S, Wang L, Hong H, et al. 2018. LncRNAs in polyploid cotton interspecific hybrids are derived from transposon neofunctionalization. Genome Biology 19:195

doi: 10.1186/s13059-018-1574-2
[18]

Zhang YC, Liao JY, Li ZY, Yu Y, Zhang JP, et al. 2014. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biology 15:512

doi: 10.1186/s13059-014-0512-1
[19]

Zhou D, Chen C, Jin Z, Chen J, Lin S, et al. 2022. Transcript profiling analysis and ncRNAs' identification of male-sterile systems of Brassica campestris reveal new insights into the mechanism underlying anther and pollen development. Frontiers in Plant Science 13:806865

doi: 10.3389/fpls.2022.806865
[20]

Wang H, Chung PJ, Liu J, Jang IC, Kean MJ, et al. 2014. Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Research 24:444−53

doi: 10.1101/gr.165555.113
[21]

Csorba T, Questa JI, Sun Q, Dean C. 2014. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proceedings of the National Academy of Sciences of the United States of America 111:16160−65

doi: 10.1073/pnas.1419030111
[22]

Wang J, Meng X, Yuan C, Harrison AP, Chen M. 2016. The roles of cross-talk epigenetic patterns in Arabidopsis thaliana. Briefings in Functional Genomics 15:278−87

doi: 10.1093/bfgp/elv025
[23]

Di C, Yuan J, Wu Y, Li J, Lin H, et al. 2014. Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. The Plant Journal 80:848−61

doi: 10.1111/tpj.12679
[24]

Ye X, Wang S, Zhao X, Gao N, Wang Y, et al. 2022. Role of lncRNAs in cis- and trans-regulatory responses to salt in Populus trichocarpa. The Plant Journal 110:978−93

doi: 10.1111/tpj.15714
[25]

Cao W, Gan L, Wang C, Zhao X, Zhang M, et al. 2021. Genome-wide identification and characterization of potato long non-coding RNAs associated with Phytophthora infestans resistance. Frontiers in Plant Science 12:619062

doi: 10.3389/fpls.2021.619062
[26]

Hu X, Wei Q, Wu H, Huang Y, Peng X, et al. 2022. Identification and characterization of heat-responsive lncRNAs in maize inbred line CM1. BMC Genomics 23:208

doi: 10.1186/s12864-022-08448-1
[27]

Jia Y, Zhao H, Niu Y, Wang Y. 2023. Identification of birch lncRNAs and mRNAs responding to salt stress and characterization of functions of lncRNA. Horticulture Research 10:uhac277

doi: 10.1093/hr/uhac277
[28]

Jia Y, Zhao H, Niu Y, Wang Y. 2024. Long noncoding RNA from Betula platyphylla, BplncSIR1, confers salt tolerance by regulating BpNAC2 to mediate reactive oxygen species scavenging and stomatal movement. Plant Biotechnology Journal 22:48−65

doi: 10.1111/pbi.14164
[29]

Zhao Y, Liu Y, Zhang F, Wang ZY, Mysore KS, et al. 2024. The long noncoding RNA LAL contributes to salinity tolerance by modulating LHCB1s' expression in Medicago truncatula. Communications Biology 7:289

doi: 10.1038/s42003-024-05953-9
[30]

Cui C, Wan H, Li Z, Ai N, Zhou B. 2024. Long noncoding RNA TRABA suppresses beta-glucosidase-encoding BGLU24 to promote salt tolerance in cotton. Plant Physiology 194:1120−38

doi: 10.1093/plphys/kiad530
[31]

Tian R, Sun X, Liu C, Chu J, Zhao M, et al. 2023. A Medicago truncatula lncRNA MtCIR1 negatively regulates response to salt stress. Planta 257:32

doi: 10.1007/s00425-022-04064-1
[32]

Zhang X, Shen J, Xu Q, Dong J, Song L, et al. 2021. Long noncoding RNA lncRNA354 functions as a competing endogenous RNA of miR160b to regulate ARF genes in response to salt stress in upland cotton. Plant, Cell & Environment 44:3302−21

doi: 10.1111/pce.14133
[33]

Liu Y, Ji D, Turgeon R, Chen J, Lin T, et al. 2019. Physiological and proteomic responses of mulberry trees (Morus alba. L.) to combined salt and drought stress. International Journal of Molecular Sciences 20:2486

doi: 10.3390/ijms20102486
[34]

Ma B, Wang H, Liu J, Chen L, Xia X, et al. 2023. The gap-free genome of mulberry elucidates the architecture and evolution of polycentric chromosomes. Horticulture Research 10:uhad111

doi: 10.1093/hr/uhad111
[35]

Sun L, Luo H, Bu D, Zhao G, Yu K, et al. 2013. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Research 41:e166

doi: 10.1093/nar/gkt646
[36]

Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, et al. 2007. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Research 35:W345−W349

doi: 10.1093/nar/gkm391
[37]

Wucher V, Legeai F, Hédan B, Rizk G, Lagoutte L, et al. 2017. FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Research 45:e57

doi: 10.1093/nar/gkw1306
[38]

Liu C, Xu Y, Feng Y, Long D, Cao B, et al. 2019. Ectopic expression of mulberry G-Proteins alters drought and salt stress tolerance in tobacco. International Journal of Molecular Sciences 20:89

doi: 10.3390/ijms20010089
[39]

Tang L, Cai H, Ji W, Luo X, Wang Z, et al. 2013. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiology and Biochemistry 71:22−30

doi: 10.1016/j.plaphy.2013.06.024
[40]

Wang D, Gong N, Liu C, Li S, Guo Z, et al. 2022. MnASI1 mediates resistance to Botrytis cinerea in Mulberry (Morus notabilis). International Journal of Molecular Sciences 23:13372

doi: 10.3390/ijms232113372
[41]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[42]

Bird LE, Rada H, Flanagan J, Diprose JM, Gilbert RJC, et al. 2014. Application of In-Fusion™ cloning for the parallel construction of E. coli expression vectors. In DNA Cloning and Assembly Methods, eds Valla S, Lale R. Totowa, NJ: Humana. Volume 1116. pp. 209−34. doi: 10.1007/978-1-62703-764-8_15

[43]

Zhang X, Dong J, Deng F, Wang W, Cheng Y, et al. 2019. The long non-coding RNA lncRNA973 is involved in cotton response to salt stress. BMC Plant Biology 19:459

doi: 10.1186/s12870-019-2088-0
[44]

Fu L, Ding Z, Tan D, Han B, Sun X, et al. 2020. Genome-wide discovery and functional prediction of salt-responsive lncRNAs in duckweed. BMC Genomics 21:212

doi: 10.1186/s12864-020-6633-x
[45]

Liu P, Zhang Y, Zou C, Yang C, Pan G, et al. 2022. Integrated analysis of long non-coding RNAs and mRNAs reveals the regulatory network of maize seedling root responding to salt stress. BMC Genomics 23:50

doi: 10.1186/s12864-021-08286-7
[46]

Zhang H, Li X, Guan Y, Li M, Wang Y, et al. 2020. Physiological and proteomic responses of reactive oxygen species metabolism and antioxidant machinery in mulberry (Morus alba L.) seedling leaves to NaCl and NaHCO3 stress. Ecotoxicology and Environmental Safety 193:110259

doi: 10.1016/j.ecoenv.2020.110259
[47]

Hu H, Xiong L. 2014. Genetic engineering and breeding of drought-resistant crops. Annual Review of Plant Biology 65:715−41

doi: 10.1146/annurev-arplant-050213-040000
[48]

Ma J, Du G, Li X, Zhang C, Guo J. 2015. A major locus controlling malondialdehyde content under water stress is associated with Fusarium crown rot resistance in wheat. Molecular Genetics and Genomics 290:1955−62

doi: 10.1007/s00438-015-1053-3
[49]

Morales M, Munné-Bosch S. 2019. Malondialdehyde: facts and artifacts. Plant Physiology 180:1246−50

doi: 10.1104/pp.19.00405
[50]

Lv Y, Liang Z, Ge M, Qi W, Zhang T, et al. 2016. Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.). BMC Genomics 17:350

doi: 10.1186/s12864-016-2650-1
[51]

Fang C, Fernie AR, Luo J. 2019. Exploring the diversity of plant metabolism. Trends in Plant Science 24:83−98

doi: 10.1016/j.tplants.2018.09.006
[52]

Dusenge ME, Duarte AG, Way DA. 2019. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist 221:32−49

doi: 10.1111/nph.15283
[53]

Fernie AR, Bachem CWB, Helariutta Y, Neuhaus HE, Prat S, et al. 2020. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. Nature Plants 6:55−66

doi: 10.1038/s41477-020-0590-x
[54]

Shulaev V, Cortes D, Miller G, Mittler R. 2008. Metabolomics for plant stress response. Physiologia Plantarum 132:199−208

doi: 10.1111/j.1399-3054.2007.01025.x
[55]

Yang G, Yu Z, Gao L, Zheng C. 2019. SnRK2s at the crossroads of growth and stress responses. Trends in Plant Science 24:672−76

doi: 10.1016/j.tplants.2019.05.010
[56]

Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, et al. 2019. Cytokinin action in response to abiotic and biotic stresses in plants. Plant, Cell & Environment 42:998−1018

doi: 10.1111/pce.13494
[57]

Yu Z, Duan X, Luo L, Dai S, Ding Z, et al. 2020. How plant hormones mediate salt stress responses. Trends in Plant Science 25:1117−30

doi: 10.1016/j.tplants.2020.06.008
[58]

Dong Q, Wallrad L, Almutairi BO, Kudla J. 2022. Ca2+ signaling in plant responses to abiotic stresses. Journal of Integrative Plant Biology 64:287−300

doi: 10.1111/jipb.13228
[59]

Jain G, Gould KS. 2015. Are betalain pigments the functional homologues of anthocyanins in plants? Environmental and Experimental Botany 119:48−53

doi: 10.1016/j.envexpbot.2015.06.002