[1]

Ru W, Wang D, Xu Y, He X, Sun YE, et al. 2015. Chemical constituents and bioactivities of Panax ginseng (C. A. Mey. ). Drug Discoveries & Therapeutics 9:23−32

doi: 10.5582/DDT.2015.01004
[2]

Kim SW, Gupta R, Lee SH, Min CW, Agrawal GK, et al. 2016. An integrated biochemical, proteomics, and metabolomics approach for supporting medicinal value of Panax ginseng fruits. Frontiers in Plant Science 7:994

doi: 10.3389/fpls.2016.00994
[3]

He C, Wang R, Ding W, Li Y. 2022. Effects of cultivation soils and ages on microbiome in the rhizosphere soil of Panax ginseng. Applied Soil Ecology 174:104397

doi: 10.1016/j.apsoil.2022.104397
[4]

Seifert KA, Mcmullen CR, Yee D, Reeleder RD, Dobinson KF. 2004. Molecular differentiation and detection of ginseng-adapted isolates of the root rot fungus Cylindrocarpon destructans. Phytopathology 93:1533−42

doi: 10.1094/PHYTO.2003.93.12.1533
[5]

Rahman M, Punja ZK. 2005. Biochemistry of ginseng root tissues affected by rusty root symptoms. Plant Physiology and Biochemistry 43:1103−14

doi: 10.1016/j.plaphy.2005.09.004
[6]

Kim YS, Balaraju K, Jeon YH. 2017. Biological characteristics of Bacillus amyloliquefaciens AK-0 and suppression of ginseng root rot caused by Cylindrocarpon destructans. Journal of Applied Microbiology 122:166−79

doi: 10.1111/jam.13325
[7]

Farh ME, Kim YJ, Kim YJ, Yang DC. 2018. Cylindrocarpon destructans/Ilyonectria radicicola-species complex: causative agent of ginseng root-rot disease and rusty symptoms. Journal of Ginseng Research 42:9−15

doi: 10.1016/j.jgr.2017.01.004
[8]

Jang CS, Lim JH, Seo MW, Song JY, Kim HG. 2010. Direct detection of Cylindrocarpon destructans, root rot pathogen of ginseng by nested PCR from soil samples. Mycobiology 38:33−38

doi: 10.4489/MYCO.2010.38.1.033
[9]

Tong AZ, Liu Q, Wang M, Cao ZQ. 2018. Review of related research on ginseng rust rot. Ginseng Research 1:39−43 (in Chinese)

doi: 10.19403/j.cnki.1671-1521.2018.01.012
[10]

Tong AZ, Han SD, Cao ZQ. 2018. Advances in research on ginseng rust rot caused by Cylindrocarpon destructans. Ginseng Research 5:33−40 (in Chinese)

doi: 10.19403/j.cnki.1671-1521.2018.05.010
[11]

Yue MY, Wang R, Liu YM, Chen BW, Ding WL, et al. 2024. Resistance of the ginseng gray mold pathogen, Botrytis cinerea, to boscalid and pyraclostrobin fungicides in China. Plant Disease 108:979−84

doi: 10.1094/PDIS-02-23-0321-RE
[12]

Zhao L, Tian H, Fu Y, Yan H, Gao R, et al. 2025. The screening, identification, and biocontrol potential of antagonistic endophytes against ginseng rust rot disease. Journal of Plant Diseases and Protection 132:44

doi: 10.1007/s41348-024-01010-z
[13]

Hussein KA, Lee YD, Joo J. 2020. Effect of Rosemary essential oil and Trichoderma koningiopsis T-403 VOCs on pathogenic fungi responsible for ginseng root rot disease. Journal of Microbiology and Biotechnology 30:1018−26

doi: 10.4014/jmb.2002.02013
[14]

Song M, Yun HY, Kim YH. 2014. Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum. Journal of Ginseng Research 38:136−45

doi: 10.1016/j.jgr.2013.11.016
[15]

Huo Y, Kang JP, Ahn JC, Yang DU, Yang DC. 2019. Ornithinimicrobium panacihumi sp. nov. antagonistic bacteria against root rot fungal pathogens, isolated from cultivated ginseng soil. Current Microbiology 76:22−28

doi: 10.1007/s00284-018-1579-9
[16]

Cavaglieri L, Orlando J, Rodríguez MI, Chulze S, Etcheverry M. 2005. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Research in Microbiology 156:748−754

doi: 10.1016/j.resmic.2005.03.001
[17]

Vendan RT, Yu YJ, Lee SH, Rhee YH. 2010. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. The Journal of Microbiology 48:559−65

doi: 10.1007/s12275-010-0082-1
[18]

Chowdhury SP, Hartmann A, Gao X, Borriss R. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Frontiers in Microbiology 6:780

doi: 10.3389/fmicb.2015.00780
[19]

Chowdhury EK, Jeon J, Rim SO, Park YH, Lee SK, et al. 2017. Composition, diversity and bioactivity of culturable bacterial endophytes in mountain-cultivated ginseng in Korea. Scientific Reports 7:10098

doi: 10.1038/s41598-017-10280-7
[20]

You C, Zhang C, Kong F, Feng C, Wang J. 2016. Comparison of the effects of biocontrol agent Bacillus subtilis and fungicide metalaxylmancozeb on bacterial communities in tobacco rhizospheric soil. Ecological Engineering 91:119−25

doi: 10.1016/j.ecoleng.2016.02.011
[21]

Ongena M, Jacques P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology 16:115−25

doi: 10.1016/j.tim.2007.12.009
[22]

Chen XH, Scholz R, Borriss M, Junge H, Mögel G, et al. 2009. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. Journal of Biotechnology 140:38−44

doi: 10.1016/j.jbiotec.2008.10.015
[23]

Hamdache A, Lamarti A, Aleu J, Collado IG. 2011. Non-peptide metabolites from the genus Bacillus. Journal of natural products 74:893−899

doi: 10.1021/np100853e
[24]

Wolińska A, Kuźniar A, Szafranek-Nakonieczna A, Jastrzębska N, Roguska E, et al. 2016. Biological activity of autochthonic bacterial community in oil-contaminated soil. Water, Air, and Soil Pollution 227:130

doi: 10.1007/s11270-016-2825-z
[25]

Djaenuddin N, Suriani, Muis A. 2020. Effectiveness of Bacillus subtilis TM4 biopesticide formulation as biocontrol agent against maydis leaf blight disease on corn. IOP Conference Series: Earth and Environmental Science 484:012096

doi: 10.1088/1755-1315/484/1/012096
[26]

Resti Z, Warnita, Liswarni Y. 2021. Endophytic bacterial consortia as biocontrol of purple blotch and plant growth promoters of shallots. IOP Conference Series Earth and Environmental Science 741:012009

doi: 10.1088/1755-1315/741/1/012009
[27]

Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, et al. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology 186:1084−96

doi: 10.1128/JB.186.4.1084-1096.2004
[28]

Falardeau J, Wise C, Novitsky L, Avis TJ. 2013. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. Journal of Chemical Ecology 39:869−78

doi: 10.1007/s10886-013-0319-7
[29]

Ceresa C, Rinaldi M, Chiono V, Carmagnola I, Allegrone G, et al. 2016. Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Antonie van Leeuwenhoek 109:1375−88

doi: 10.1007/s10482-016-0736-z
[30]

He CP, Fan LY, Wu WH, Liang YQ, Li R, et al. 2017. Identification of lipopeptides produced by Bacillus subtilis Czk1 isolated from the aerial roots of rubber trees. Genetics and Molecular Research 16:gmr16018710

doi: 10.4238/gmr16018710
[31]

Yang P, Yuan P, Liu W, Zhao Z, Bernier MC, et al. 2024. Plant growth promotion and plant disease suppression induced by Bacillus amyloliquefaciens strain GD4a. Plants 13:672

doi: 10.3390/plants13050672
[32]

Jiang J, Gao L, Bie X, Lu Z, Liu H, et al. 2016. Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme. BMC Microbiology 16:31

doi: 10.1186/s12866-016-0645-3
[33]

Perez KJ, Viana JD, Lopes FC, Pereira JQ, Dos Santos DM, et al. 2017. Bacillus spp. isolated from puba as a source of biosurfactants and antimicrobial lipopeptides. Frontiers in Microbiology 8:61

doi: 10.3389/fmicb.2017.00061
[34]

Jourdan E, Henry G, Duby F, Dommes J, Barthélemy JP, et al. 2009. Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Molecular Plant-Microbe Interactions 22:456−68

doi: 10.1094/MPMI-22-4-0456
[35]

Yamamoto S, Shiraishi S, Suzuki S. 2015. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Letters in Applied Microbiology 60:379−86

doi: 10.1111/lam.12382
[36]

Song X, Wu H, Yin Z, Lian M, Yin C. 2017. Endophytic bacteria isolated from panax ginseng improves ginsenoside accumulation in adventitious ginseng root culture. Molecules 22:837

doi: 10.3390/molecules22060837
[37]

Dong L, Cheng R, Xiao L, Wei F, Wei G, et al. 2018. Diversity and composition of bacterial endophytes among plant parts of Panax notoginseng. Chinese Medicine 13:41

doi: 10.1186/s13020-018-0198-5
[38]

Rahman M, Punja ZK. 2005. Factors influencing development of root rot on ginseng caused by Cylindrocarpon destructans. Phytopathology 95:1381−90

doi: 10.1094/PHYTO-95-1381
[39]

Príncipe A, Fernandez M, Torasso M, Godino A, Fischer S. 2018. Effectiveness of tailocins produced by Pseudomonas fluorescens SF4c in controlling the bacterial-spot disease in tomatoes caused by Xanthomonas vesicatoria. Microbiological Research 212−213:94−102

doi: 10.1016/j.micres.2018.05.010
[40]

Barbe V, Cruveiller S, Kunst F, Lenoble P, Meurice G, et al. 2009. From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. Microbiology 155(Pt6):1758−75

doi: 10.1099/mic.0.027839-0
[41]

Deng Y, Zhu Y, Wang P, Zhu L, Zheng J, et al. 2011. Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora. Journal of Bacteriology 193:2070−71

doi: 10.1128/JB.00129-11
[42]

Vágvölgyi C, Sajben-Nagy E, Bóka B, Vörös M, Berki A, et al. 2013. Isolation and characterization of antagonistic Bacillus strains capable to degrade ethylenethiourea. Current Microbiology 66:243−50

doi: 10.1007/s00284-012-0263-8
[43]

Zhao Y, Selvaraj JN, Xing F, Zhou L, Wang Y, et al. 2014. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS One 9:e92486

doi: 10.1371/journal.pone.0092486
[44]

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30:2725−29

doi: 10.1093/molbev/mst197
[45]

Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, et al. 2012. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature Biotechnology 30:693−700

doi: 10.1038/nbt.2280
[46]

Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673−79

doi: 10.1093/bioinformatics/btm009
[47]

Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research 28:33−36

doi: 10.1093/nar/28.1.33
[48]

Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25:955−64

doi: 10.1093/nar/25.5.955
[49]

Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, et al. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research 35:3100−8

doi: 10.1093/nar/gkm160
[50]

Weber T, Blin K, Duddela S, Krug D, Kim HU, et al. 2015. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Research 43(W1):W237−W243

doi: 10.1093/nar/gkv437
[51]

Akpa E, Jacques P, Wathelet B, Paquot M, Fuchs R, et al. 2001. Influence of culture conditions on lipopeptide production by Bacillus subtilis. Applied Biochemistry and Biotechnology 91-93:551−61

doi: 10.1385/ABAB:91-93:1-9:551
[52]

Schalchli H, Lamilla C, Rubilar O, Briceño G, Gallardo F, et al. 2023. Production and characterization of a biosurfactant produced by Bacillus amyloliquefaciens C11 for enhancing the solubility of pesticides. Journal of Environmental Chemical Engineering 11:111572

doi: 10.1016/j.jece.2023.111572
[53]

Zhou YW, Yang X, Li Q, Peng Z, Li J, et al. 2023. Optimization of fermentation conditions for surfactin production by B. subtilis YPS-32. BMC Microbiology 23:117

doi: 10.1186/s12866-023-02838-5
[54]

Wu S, Liu G, Zhou S, Sha Z, Sun C. 2019. Characterization of antifungal lipopeptide biosurfactants produced by marine bacterium Bacillus sp. CS30. Marine Drugs 17:199

doi: 10.3390/md17040199
[55]

Liao JH, Chen PY, Yang YL, Kan SC, Hsieh FC, et al. 2016. Clarification of the antagonistic effect of the lipopeptides produced by Bacillus amyloliquefaciens BPD1 against Pyricularia oryzae via in situ MALDI-TOF IMS analysis. Molecules 21:1670

doi: 10.3390/molecules21121670
[56]

Fira D, Dimkić I, Berić T, Lozo J, Stanković S. 2018. Biological control of plant pathogens by Bacillus species. Journal of Biotechnology 285:44−55

doi: 10.1016/j.jbiotec.2018.07.044
[57]

Weller DM. 2007. Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology 97:250−56

doi: 10.1094/PHYTO-97-2-0250
[58]

Asad SA. 2022. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases - A review. Ecological complexity 49:100978

doi: 10.1016/j.ecocom.2021.100978
[59]

Kinkel LL, Schlatter DC, Bakker MG, Arenz BE. 2012. Streptomyces competition and co-evolution in relation to plant disease suppression. Research in Microbiology 163:490−99

doi: 10.1016/j.resmic.2012.07.005
[60]

Cavaglieri L, Orlando J, Etcheverry M. 2005. In vitro influence of bacterial mixtures on Fusarium verticillioides growth and fumonisin B1 production: effect of seeds treatment on maize root colonization. Letters in Applied Microbiology 41:390−96

doi: 10.1111/j.1472-765X.2005.01785.x
[61]

Bolivar-Anillo HJ, González-Rodríguez VE, Cantoral JM, García-Sánchez D, Collado IG, et al. 2021. Endophytic bacteria Bacillus subtilis, isolated from Zea mays, as potential biocontrol agent against Botrytis cinerea. Biology, 10:492

doi: 10.3390/biology10060492
[62]

Shafi J, Tian H, Ji M. 2017. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology and Biotechnological Equipment 31:446−59

doi: 10.1080/13102818.2017.1286950
[63]

Zhao X, Zhou ZJ, Han Y, Wang ZZ, Fan J, et al. 2013. Isolation and identification of antifungal peptides from Bacillus BH072, a novel bacterium isolated from honey. Microbiological Research 168:598−606

doi: 10.1016/j.micres.2013.03.001
[64]

Gong AD, Li HP, Yuan QS, Song XS, Yao W, et al. 2015. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One 10:e0116871

doi: 10.1371/journal.pone.0116871
[65]

Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology 56:845−857

doi: 10.1111/j.1365-2958.2005.04587.x
[66]

Jang YL, Kim SG, Kim YH. 2011. Biocontrol efficacies of Bacillus species against Cylindrocarpon destructans causing ginseng root rot. Plant Pathology Journal 27:333−41

doi: 10.5423/PPJ.2011.27.4.333
[67]

Zhou C, Piao C, Zhang H. 2023. Identification of antagonistic bacterium strain and biocontrol effects on ginseng root rot disease. African Journal of Biotechnology 22:329−34

doi: 10.5897/AJB2022.17506
[68]

Kang BR, Park JS, Jung WJ. 2020. Antifungal evaluation of fengycin isoforms isolated from Bacillus amyloliquefaciens PPL against Fusarium oxysporum f. sp. lycopersici. Microbial Pathogenesis 149:104509

doi: 10.1016/j.micpath.2020.104509
[69]

Chakraborty K, Kizhakkekalam VK, Joy M, Chakraborty RD. 2022. Bacillibactin class of siderophore antibiotics from a marine symbiotic Bacillus as promising antibacterial agents. Applied Microbiology and Biotechnology 106:329−40

doi: 10.1007/s00253-021-11632-0
[70]

Hider RC, Kong X. 2010. Chemistry and biology of siderophores. Natural Product Reports 27:637−57

doi: 10.1039/b906679a
[71]

Miethke M, Klotz O, Linne U, May JJ, Beckering CL, et al. 2006. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Molecular Microbiology 61:1413−27

doi: 10.1111/j.1365-2958.2006.05321.x
[72]

Cassat JE, Skaar EP. 2013. Iron in infection and immunity. Cell Host & Microbe 13:509−19

doi: 10.1016/j.chom.2013.04.010
[73]

Dertz EA, Xu J, Stintzi A, Raymond KN. 2006. Bacillibactin-mediated iron transport in Bacillus subtilis. Journal of the American Chemical Society 128:22−23

doi: 10.1021/ja055898c
[74]

Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology 25:1007−14

doi: 10.1038/nbt1325
[75]

Ding T, Su B, Chen X, Xie S, Gu S, et al. 2017. An endophytic bacterial strain isolated from Eucommia ulmoides inhibits southern corn leaf blight. Frontiers in Microbiology 8:903

doi: 10.3389/fmicb.2017.00903
[76]

Vurukonda SSKP, Giovanardi D, Stefani E. 2018. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. International Journal of Molecular Sciences 19:952

doi: 10.3390/ijms19040952