[1]

Zhu Z, Chai X, Xu L, Quan L, Yuan C, et al. 2023. Design and performance of a distributed electric drive system for a series hybrid electric combine harvester. Biosystems Engineering 236:160−74

doi: 10.1016/j.biosystemseng.2023.10.015
[2]

Ye Y, Mao Y, Zhao L, Chen Y, Chen M. 2024. Experimental investigation of thermal runaway behavior and propagation inhibition of lithium-ion battery by immersion cooling. Applied Thermal Engineering 256:124093

doi: 10.1016/j.applthermaleng.2024.124093
[3]

Wu S, Wang C, Luan W, Zhang Y, Chen Y, et al. 2023. Thermal runaway behaviors of Li-ion batteries after low temperature aging: Experimental study and predictive modeling. Journal of Energy Storage 66:107451

doi: 10.1016/j.est.2023.107451
[4]

Chen M, Zhu M, Zhang S, Ouyang D, Weng J, et al. 2023. Experimental investigation on mitigation of thermal runaway propagation of lithium-ion battery module with flame retardant phase change materials. Applied Thermal Engineering 235:121401

doi: 10.1016/j.applthermaleng.2023.121401
[5]

Li X, Zhou Z, Zhang M, Zhang F, Zhou X. 2022. A liquid cooling technology based on fluorocarbons for lithium-ion battery thermal safety. Journal of Loss Prevention in the Process Industries 78:104818

doi: 10.1016/j.jlp.2022.104818
[6]

Bai P, Xu R, Liu M, Jia Z, Sun Z, et al. 2023. Thermal runaway characteristics of LFP batteries by immersion cooling. ACS Applied Energy Materials 6(13):7205−11

doi: 10.1021/acsaem.3c00904
[7]

Kong D, Zhao H, Ping P, Zhang Y, Wang G. 2023. Effect of low temperature on thermal runaway and fire behaviors of 18650 lithium-ion battery: a comprehensive experimental study. Process Safety and Environmental Protection 174:448−59

doi: 10.1016/j.psep.2023.04.017
[8]

Mao B, Yu S, Zhang X, Shi J, Zhang Y. 2024. Characterization of the deflagration behavior of the lithium-ion battery module within a confined space under different ventilation conditions. Process Safety and Environmental Protection 184:1034−40

doi: 10.1016/j.psep.2024.02.039
[9]

Ren D, Feng X, Liu L, Hsu H, Lu L, et al. 2021. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition. Energy Storage Materials 34:563−73

doi: 10.1016/j.ensm.2020.10.020
[10]

Dai X, Kong D, Du J, Zhang Y, Ping P. 2022. Investigation on effect of phase change material on the thermal runaway of lithium-ion battery and exploration of flame retardancy improvement. Process Safety and Environmental Protection 159:232−42

doi: 10.1016/j.psep.2021.12.051
[11]

Huang Q, Li X, Zhang G, Weng J, Wang Y, et al. 2022. Innovative thermal management and thermal runaway suppression for battery module with flame retardant flexible composite phase change material. Journal of Cleaner Production 330:129718

doi: 10.1016/j.jclepro.2021.129718
[12]

Zhao L, Li W, Wang G, Cheng W, Chen M. 2023. A novel thermal management system for lithium-ion battery modules combining direct liquid-cooling with forced air-cooling. Applied Thermal Engineering 232:120992

doi: 10.1016/j.applthermaleng.2023.120992
[13]

Zhang L, Duan Q, Xu J, Meng X, Sun J, et al. 2023. Experimental investigation on suppression of thermal runaway propagation of lithium-ion battery by intermittent spray. Journal of Energy Storage 58:106434

doi: 10.1016/j.est.2022.106434
[14]

Hu J, Tang X, Zhu X, Liu T, Wang X. 2024. Suppression of thermal runaway induced by thermal abuse in large-capacity lithium-ion batteries with water mist. Energy 286:129669

doi: 10.1016/j.energy.2023.129669
[15]

Mao Y, Ye Y, Zhao L, Chen Y, Chen M. 2024. Suppression of lithium-ion battery thermal runaway propagation by zirconia ceramics and aerogel felt in confined space. Process Safety and Environmental Protection 189:1258−73

doi: 10.1016/j.psep.2024.07.015
[16]

Chavan S, Venkateswarlu B, Salman M, Liu J, Pawar P, et al. 2024. Thermal management strategies for lithium-ion batteries in electric vehicles: Fundamentals, recent advances, thermal models, and cooling techniques. International Journal of Heat and Mass Transfer 232:125918

doi: 10.1016/j.ijheatmasstransfer.2024.125918
[17]

Wu C, Sun Y, Tang H, Zhang S, Yuan W, et al. 2024. A review on the liquid cooling thermal management system of lithium-ion batteries. Applied Energy 375:124173

doi: 10.1016/j.apenergy.2024.124173
[18]

Nasiri M, Hadim H. 2024. Advances in battery thermal management: Current landscape and future directions. Renewable and Sustainable Energy Reviews 200:114611

doi: 10.1016/j.rser.2024.114611
[19]

Guo C, He L, Yao Y, Lin W, Zhang Y, et al. 2022. Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the Li-ion batteries. Nano-Micro Letters 14(1):202

doi: 10.1007/s40820-022-00947-w
[20]

Wang C, Geng X, Chen J, Wang H, Wei Z, et al. 2024. Multiple H-bonding cross-linked supramolecular solid–solid phase change materials for thermal energy storage and management. Advanced Materials 36(11):2309723

doi: 10.1002/adma.202309723
[21]

Zhao J, Rui Z, Hu Z, Shangguan Z, Yin S, et al. 2024. Flexible phase change materials based on hexagonal boron nitride (hBN) surface modification and styrene-butadiene-styrene (SBS)/low-density polyethylene (LDPE) crosslinking for battery thermal management applications. Chemical Engineering Journal 485:150110

doi: 10.1016/j.cej.2024.150110
[22]

Chen M, Yu Y, Ouyang D, Weng J, Zhao L, et al. 2024. Research progress of enhancing battery safety with phase change materials. Renewable and Sustainable Energy Reviews 189:113921

doi: 10.1016/j.rser.2023.113921
[23]

Chen M, Zhu M, Zhao L Chen Y. 2024. Study on thermal runaway propagation inhibition of battery module by flame-retardant phase change material combined with aerogel felt. Applied Energy 367:123394

doi: 10.1016/j.apenergy.2024.123394
[24]

Zhang W, Li X, Liu G, Ouyang N, Yuan J, et al. 2024. Optimization design of a hybrid thermal runaway propagation mitigation system for power battery module using high-dimensional surrogate models. Renewable Energy 225:120288

doi: 10.1016/j.renene.2024.120288
[25]

Tang J, Wu X, Ren J, Min H, Liu X, et al. 2023. Suppressing thermal runaway propagation of nickel-rich Lithium-ion battery modules using silica aerogel sheets. Process Safety and Environmental Protection 179:199−207

doi: 10.1016/j.psep.2023.08.100
[26]

Yang X, Duan Y, Feng X, Chen T, Xu C, et al. 2020. An experimental study on preventing thermal runaway propagation in lithium-ion battery module using aerogel and liquid cooling plate together. Fire Technology 56(6):2579−602

doi: 10.1007/s10694-020-00995-x
[27]

Wong SK, Li K, Rui X, Fan L, Ouyang M, et al. 2024. Mitigating thermal runaway propagation in high specific energy lithium-ion battery modules through nanofiber aerogel composite material. Energy 307:132353

doi: 10.1016/j.energy.2024.132353
[28]

Yang S, Luo X, Li X, Nian V, Liu S, et al. 2024. Comparing different battery thermal management systems for suppressing thermal runaway propagation. Journal of Energy Storage 101:114005

doi: 10.1016/j.est.2024.114005
[29]

Dai X, Ping P, Kong D, Gao X, Zhang Y, et al. 2024. Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation. Journal of Energy Chemistry 89:226−38

doi: 10.1016/j.jechem.2023.10.001
[30]

Chen L, Pereira C, Pannala S, Munjurulimana D, Goossens H. 2025. Mitigation of cylindrical lithium ion battery thermal runaway propagation with a flame retardant polypropylene thermal barrier. Journal of Energy Storage 108:115042

doi: 10.1016/j.est.2024.115042
[31]

Chen J, Xu C, Liu J, Sun Y, Kang Wong S, et al. 2025. Enhanced barrier materials with integrated gas regulation capabilities to mitigate explosion risks in battery systems. Chemical Engineering Journal 503:158235

doi: 10.1016/j.cej.2024.158235
[32]

Shen J, Su Y, Xu X, Chen X, Wang X, et al. 2025. Performance of sandwich type fire-resistant flexible composite phase change material PEE@EBF for battery thermal management and runaway protection. Applied Thermal Engineering 258:124813

doi: 10.1016/j.applthermaleng.2024.124813
[33]

Zhi M, Liu Q, Xu Q, Pan Z, Sun Q, et al. 2024. Review of prevention and mitigation technologies for thermal runaway in lithium-ion batteries. Aerospace Traffic and Safety 1(1): 55−72

[34]

Han J, Wang F. 2023. Design and testing of a small orchard tractor driven by a power battery. Engenharia Agrícola 43(2):e20220195

doi: 10.1590/1809-4430-eng.agric.v43n2e20220195/2023
[35]

Jing Z, Ding J, Zhang T, Yang D, Qiu F, et al. 2019. Flexible, versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation. Food and Bioproducts Processing 115:134−42

doi: 10.1016/j.fbp.2019.03.010
[36]

Wang S, Zhou R, Ren Y, Jiao M, Liu H, et al. 2025. Advanced data-driven techniques in AI for predicting lithium-ion battery remaining useful life: a comprehensive review. Green Chemical Engineering 6(2):139−53

doi: 10.1016/j.gce.2024.09.001
[37]

Zhao J, Lv Z, Li D, Feng X, Wang Z, et al. 2024. Battery engineering safety technologies (BEST): M5 framework of mechanisms, modes, metrics, modeling, and mitigation. eTransportation 22:100364

doi: 10.1016/j.etran.2024.100364
[38]

Yuan Y, Xie K, Ji W, Sun Y, Yang F, et al. 2025. Data-driven fuzzy sliding mode observer-based control strategy for time-varying suspension system of 12/14 bearingless SRM. IEEE Transactions on Fuzzy Systems 33(1):145−55

doi: 10.1109/TFUZZ.2024.3406141
[39]

Zhu Z, Zeng L, Chen L, Zou R, Cai Y. 2022. Fuzzy adaptive energy management strategy for a hybrid agricultural tractor equipped with HMCVT. Agriculture 12(12):1986

doi: 10.3390/agriculture12121986