[1]

Zhang Z, Pang H, Georgiadis A, Cecati C. 2019. Wireless power transfer—an overview. IEEE Transactions on Industrial Electronics 66:1044−58

doi: 10.1109/TIE.2018.2835378
[2]

Zhang P, Saeedifard M, Onar OC, Yang Q, Cai C. 2021. A field enhancement integration design featuring misalignment tolerance for wireless EV charging using LCL topology. IEEE Transactions on Power Electronics 36:3852−67

doi: 10.1109/TPEL.2020.3021591
[3]

Zhang Y, Wu Y, Shen Z, Pan W, Wang H, et al. 2023. Integration of onboard charger and wireless charging system for electric vehicles with shared coupler, compensation, and rectifier. IEEE Transactions on Industrial Electronics 70:7511−14

doi: 10.1109/TIE.2022.3204857
[4]

Jia Y, Zhao L, Wang Z, Tang C, Chen F, et al. 2024. Integrated LCC-LCC topology for WPT system with CC output regarding air gap and load variations. IEEE Transactions on Power Electronics 39:11904−15

doi: 10.1109/TPEL.2024.3413068
[5]

Hui SYR, Zhong W, Lee CK. 2014. A critical review of recent progress in mid-range wireless power transfer. IEEE Transactions on Power Electronics 29:4500−11

doi: 10.1109/TPEL.2013.2249670
[6]

Rodenbeck CT, Tierney BB, Park J, Parent MG, DePuma CB, et al. 2022. Terrestrial microwave power beaming. IEEE Journal of Microwaves 2:28−43

doi: 10.1109/JMW.2021.3130765
[7]

Zhu X, Jin K, Hui Q. 2021. Near-field power-focused directional radiation in microwave wireless power transfer system. IEEE Journal of Emerging and Selected Topics in Power Electronics 9:1147−56

doi: 10.1109/JESTPE.2020.2965951
[8]

Tanaka Y, Hamase H, Kanai K, Hasaba R, Sato H, et al. 2023. Simulation and implementation of distributed microwave wireless power transfer system. IEEE Transactions on Microwave Theory and Techniques 71:102−11

doi: 10.1109/TMTT.2022.3142259
[9]

Li Y, Ni X, Liu J, Wang R, Ma J, et al. 2020. Design and optimization of coupling coils for bidirectional wireless charging system of unmanned aerial vehicle. Electronics 9:1964

doi: 10.3390/electronics9111964
[10]

Gümrükcü E, Klemets JRA, Suul JA, Ponci F, Monti A. 2023. Decentralized energy management concept for urban charging hubs with multiple V2G aggregators. IEEE Transactions on Transportation Electrification 9:2367−81

doi: 10.1109/TTE.2022.3208627
[11]

Strassner B, Chang K. 2013. Microwave power transmission: historical milestones and system components. Proceedings of the IEEE 101:1379−96

doi: 10.1109/JPROC.2013.2246132
[12]

Zhu X, Jin K, Hui Q, Gong W, Mao D. 2021. Long-range wireless microwave power transmission: a review of recent progress. IEEE Journal of Emerging and Selected Topics in Power Electronics 9:4932−46

doi: 10.1109/JESTPE.2020.3038166
[13]

He Z, Lan J, Liu C. 2021. Compact rectifiers with ultra-wide input power range based on nonlinear impedance characteristics of Schottky diodes. IEEE Transactions on Power Electronics 36:7407−11

doi: 10.1109/TPEL.2020.3046083
[14]

Sharma T, Dhar SK, Holmes DG, Darraji R, R SE, et al. 2019. Simplified first-pass design of high-efficiency class-F−1 power amplifiers based on second-harmonic minima. IEEE Transactions on Microwave Theory and Techniques 67:3147−61

doi: 10.1109/TMTT.2019.2896558
[15]

He H, Lin H, Wu P, Li Q, Liu C. 2022. Compact high-efficiency broadband rectifier based on coupled transmission line. IEEE Transactions on Circuits and Systems II: Express Briefs 69:4404−8

doi: 10.1109/TCSII.2022.3190396
[16]

Zhang B, Zhao X, Yu C, Huang K, Liu C. 2011. A power enhanced high efficiency 2.45 GHz rectifier based on diode array. Journal of Electromagnetic Waves and Applications 25:765−74

doi: 10.1163/156939311794827159
[17]

Liou CY, Lee ML, Huang SS, Mao SG. 2013. High-power and high-efficiency RF rectifiers using series and parallel power-dividing networks and their applications to wirelessly powered devices. IEEE Transactions on Microwave Theory and Techniques 61:616−24

doi: 10.1109/TMTT.2012.2230023
[18]

Haider MF, Zhang S, You F, He Q, Dong SW, et al. 2021. A high-efficiency self-synchronous RF-DC rectifier with a fixed broadband phase offset. IEEE Microwave and Wireless Components Letters 31:324−27

doi: 10.1109/LMWC.2020.3049051
[19]

Hamill DC. 1990. Time reversal duality and the synthesis of a double class E DC-DC converter. 21 st Annual IEEE Conference on Power Electronics Specialists, San Antonio, TX, USA, 1990. USA: IEEE. pp. 512−21. doi: 10.1109/PESC.1990.131231

[20]

Wang D, Nghiem XA, Wei MD, Negra R. 2015. Design of a high efficiency rectifier with wide bandwidth and input power range based on the time reversal duality of power amplifier. 2015 European Microwave Conference (EuMC), Paris, France, 7−10 September 2015. USA: IEEE. pp. 291−94. doi: 10.1109/EuMC.2015.7345757

[21]

Nguyen DA, Nam H, Seo C. 2023. Design of compact class-F high-efficiency shunt-diode rectifier with extended harmonic termination for wireless power transfer. IEEE Microwave and Wireless Technology Letters 33:78−81

doi: 10.1109/LMWC.2022.3202760
[22]

Zhao F, Li Z, Wen G, Li J, Inserra D, et al. 2019. A compact high-efficiency watt-level microwave rectifier with a novel harmonic termination network. IEEE Microwave and Wireless Components Letters 29:418−20

doi: 10.1109/LMWC.2019.2913782
[23]

Shi W, He S, Li Q. 2016. A series of inverse continuous modes for designing broadband power amplifiers. IEEE Microwave and Wireless Components Letters 26:525−27

doi: 10.1109/LMWC.2016.2574820
[24]

Yang M, Xia J, Guo Y, Zhu A. 2016. Highly efficient broadband continuous inverse class-F power amplifier design using modified elliptic low-pass filtering matching network. IEEE Transactions on Microwave Theory and Techniques 64:1515−25

doi: 10.1109/TMTT.2016.2544318
[25]

Ekhteraei M, Hayati M, Shama F. 2020. High-efficiency low voltage inverse class-F power amplifier design based on harmonic control network analysis. IEEE Transactions on Circuits and Systems I: Regular Papers 67:806−14

doi: 10.1109/TCSI.2019.2952932