| [1] |
Kimura S, Sinha N. 2008. Tomato (Solanum lycopersicum): a model fruit-bearing crop. Cold Spring Harbor Protocols 2008:pdb.emo105 doi: 10.1101/pdb.emo105 |
| [2] |
Dorais M, Ehret DL, Papadopoulos AP. 2008. Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochemistry Reviews 7:231−50 doi: 10.1007/s11101-007-9085-x |
| [3] |
Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, et al. 2019. Tomato fruit development and metabolism. Frontiers in Plant Science 10:1554 doi: 10.3389/fpls.2019.01554 |
| [4] |
Hoeberichts FA, Van der Plas LHW, Woltering EJ. 2002. Ethylene perception is required for the expression of tomato ripening-related genes and associated physiological changes even at advanced stages of ripening. Postharvest Biology and Technology 26:125−33 doi: 10.1016/S0925-5214(02)00012-1 |
| [5] |
Chen Y, Grimplet J, David K, Castellarin SD, Terol J, et al. 2018. Ethylene receptors and related proteins in climacteric and non-climacteric fruits. Plant Science 276:63−72 doi: 10.1016/j.plantsci.2018.07.012 |
| [6] |
Bapat VA, Trivedi PK, Ghosh A, Sane VA, Ganapathi TR, et al. 2010. Ripening of fleshy fruit: molecular insight and the role of ethylene. Biotechnology Advances 28:94−107 doi: 10.1016/j.biotechadv.2009.10.002 |
| [7] |
Alonso-Salinas R, López-Miranda S, Pérez-López AJ, Acosta-Motos JR. 2024. Strategies to delay ethylene-mediated ripening in climacteric fruits: implications for shelf life extension and postharvest quality. Horticulturae 10:840 doi: 10.3390/horticulturae10080840 |
| [8] |
Zhang J, Ma Y, Dong C, Terry LA, Watkins CB, et al. 2020. Meta-analysis of the effects of 1-methylcyclopropene (1-MCP) treatment on climacteric fruit ripening. Horticulture Research 7:208 doi: 10.1038/s41438-020-00405-x |
| [9] |
Liu M, Pirrello J, Chervin C, Roustan JP, Bouzayen M. 2015. Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiology 169:2380−90 doi: 10.1104/pp.15.01361 |
| [10] |
Zhang L, Chen L, Pang S, Zheng Q, Quan S, et al. 2022. Function analysis of the ERF and DREB subfamilies in tomato fruit development and ripening. Frontiers in Plant Science 13:849048 doi: 10.3389/fpls.2022.849048 |
| [11] |
Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, et al. 2011. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant & Cell Physiology 52:344−60 doi: 10.1093/pcp/pcq196 |
| [12] |
Rao G, Sui J, Zeng Y, He C, Zhang J. 2015. Genome-wide analysis of the AP2/ ERF gene family in Salix arbutifolia. FEBS Open Bio 5:132−37 doi: 10.1016/j.fob.2015.02.002 |
| [13] |
Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, et al. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications 290:998−1009 doi: 10.1006/bbrc.2001.6299 |
| [14] |
Nakano T, Suzuki K, Fujimura T, Shinshi H. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology 140:411−32 doi: 10.1104/pp.105.073783 |
| [15] |
Dietz KJ, Vogel MO, Viehhauser A. 2010. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma 245:3−14 doi: 10.1007/s00709-010-0142-8 |
| [16] |
Xu ZS, Chen M, Li LC, Ma YZ. 2008. Functions of the ERF transcription factor family in plants. Botany 86:969−77 doi: 10.1139/B08-041 |
| [17] |
Zhao M, Haxim Y, Liang Y, Qiao S, Gao B, et al. 2022. Genome-wide investigation of AP2/ERF gene family in the desert legume Eremosparton songoricum: Identification, classification, evolution, and expression profiling under drought stress. Frontiers in Plant Science 13:885694 doi: 10.3389/fpls.2022.885694 |
| [18] |
Licausi F, Ohme-Takagi M, Perata P. 2013. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytologist 199:639−49 doi: 10.1111/nph.12291 |
| [19] |
Liu M, Chen Y, Chen Y, Shin JH, Mila I, et al. 2018. The tomato Ethylene Response Factor Sl-ERF. B3 integrates ethylene and auxin signaling via direct regulation of Sl-Aux/IAA27. New Phytologist 219:631−40 doi: 10.1111/nph.15165 |
| [20] |
Guo H, Mao M, Deng Y, Sun L, Chen R, et al. 2022. Multi-omics analysis reveals that SlERF.D6 synergistically regulates SGAs and fruit development. Frontiers in Plant Science 13:860577 doi: 10.3389/fpls.2022.860577 |
| [21] |
Deng H, Chen Y, Liu Z, Liu Z, Shu P, et al. 2022. SlERF.F12 modulates the transition to ripening in tomato fruit by recruiting the co-repressor TOPLESS and histone deacetylases to repress key ripening genes. The Plant Cell 34:1250−72 doi: 10.1093/plcell/koac025 |
| [22] |
Irfan M, Kumar P, Kumar V, Datta A. 2022. Fruit ripening specific expression of β-D-N-acetylhexosaminidase (β-Hex) gene in tomato is transcriptionally regulated by ethylene response factor SlERF.E4. Plant Science 323:111380 doi: 10.1016/j.plantsci.2022.111380 |
| [23] |
Tang Q, Wei S, Zheng X, Tu P, Tao F. 2024. APETALA2/ethylene-responsive factors in higher plant and their roles in regulation of plant stress response. Critical Reviews in Biotechnology 44:1533−51 doi: 10.1080/07388551.2023.2299769 |
| [24] |
Chen G, Hu Z, Grierson D. 2008. Differential regulation of tomato ethylene responsive factor LeERF3b, a putative repressor, and the activator Pti4 in ripening mutants and in response to environmental stresses. Journal of Plant Physiology 165:662−70 doi: 10.1016/j.jplph.2007.03.006 |
| [25] |
Huang Z, Zhang Z, Zhang X, Zhang H, Huang D, et al. 2004. Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Letters 573:110−16 doi: 10.1016/j.febslet.2004.07.064 |
| [26] |
Müller M, Munné-Bosch S. 2015. Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiology 169:32−41 doi: 10.1104/pp.15.00677 |
| [27] |
Shoji T, Yuan L. 2021. ERF gene clusters: working together to regulate metabolism. Trends in Plant Science 26:23−32 doi: 10.1016/j.tplants.2020.07.015 |
| [28] |
Li Y, Zhu B, Xu W, Zhu H, Chen A, et al. 2007. LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant Cell Reports 26:1999−2008 doi: 10.1007/s00299-007-0394-8 |
| [29] |
Liu M, Gomes BL, Mila I, Purgatto E, Peres LEP, et al. 2016. Comprehensive profiling of ethylene response factor expression identifies ripening-associated ERF genes and their link to key regulators of fruit ripening in tomato. Plant Physiology 170:1732−44 doi: 10.1104/pp.15.01859 |
| [30] |
Pirrello J, Prasad BC, Zhang W, Chen K, Mila I, et al. 2012. Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biology 12:190 doi: 10.1186/1471-2229-12-190 |
| [31] |
Chen Y, Yang H, Tang B, Li F, Xie Q, et al. 2023. The AP2/ERF transcription factor SlERF.J2 functions in hypocotyl elongation and plant height in tomato. Plant Cell Reports 42:371−83 doi: 10.1007/s00299-022-02963-x |
| [32] |
Garg R, Mahato H, Choudhury U, Thakur RS, Debnath P, et al. 2024. The tomato EAR-motif repressor, SlERF36, accelerates growth transitions and reduces plant life cycle by regulating GA levels and responses. Plant Biotechnology Journal 22:848−62 doi: 10.1111/pbi.14228 |
| [33] |
Pei Y, Xue Q, Shu P, Xu W, Du X, et al. 2024. Bifunctional transcription factors SlERF.H5 and H7 activate cell wall and repress gibberellin biosynthesis genes in tomato via a conserved motif. Developmental Cell 59:1345−59 doi: 10.1016/j.devcel.2024.03.006 |
| [34] |
Nakano T, Fujisawa M, Shima Y, Ito Y. 2014. The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. Journal of Experimental Botany 65:3111−19 doi: 10.1093/jxb/eru154 |
| [35] |
Upadhyay RK, Gupta A, Ranjan S, Singh R, Pathre UV, et al. 2014. The EAR motif controls the early flowering and senescence phenotype mediated by over-expression of SlERF36 and is partly responsible for changes in stomatal density and photosynthesis. PLoS One 9:e101995 doi: 10.1371/journal.pone.0101995 |
| [36] |
Álvarez-Gómez TB, Ramírez-Trujillo JA, Ramírez-Yáñez M, Suárez-Rodríguez R. 2021. Overexpression of SlERF3b and SlERF5 in transgenic tomato alters fruit size, number of seeds and promotes early flowering, tolerance to abiotic stress and resistance to Botrytis cinerea infection. Annals of Applied Biology 179:382−94 doi: 10.1111/aab.12712 |
| [37] |
Chen Y, Wang X, Colantonio V, Gao Z, Pei Y, et al. 2025. Ethylene response factor SlERF. D6 promotes ripening in part through transcription factors SlDEAR2 and SlTCP12. Proceedings of the National Academy of Sciences of the United States of America 122:e2405894122 |
| [38] |
Liu M, Diretto G, Pirrello J, Roustan JP, Li Z, et al. 2014. The chimeric repressor version of an Ethylene Response Factor (ERF) family member, Sl-ERF.B3, shows contrasting effects on tomato fruit ripening. New Phytologist 203:206−18 doi: 10.1111/nph.12771 |
| [39] |
Wang Y, Feng G, Zhang Z, Liu Y, Ma Y, et al. 2012. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. The Plant Journal 70:191−204 doi: 10.1111/j.1365-313X.2011.04863.x |
| [40] |
Wang Y, Feng GD, Zhang Z, Liu Y, Ma YL, et al. 2021. Overexpression of Pti4, Pti5, and Pti6 in tomato promote plant defense and fruit ripening. Plant Science 302:110702 doi: 10.1016/j.plantsci.2020.110702 |
| [41] |
You S, Wu Y, Li W, Liu X, Tang Q, et al. 2024. SlERF.G3-Like mediates a hierarchical transcriptional cascade to regulate ripening and metabolic changes in tomato fruit. Plant Biotechnology Journal 22:165−80 doi: 10.1111/pbi.14177 |
| [42] |
Ma Z, Hu L, Jiang W. 2024. Understanding AP2/ERF transcription factor responses and tolerance to various abiotic stresses in plants: acomprehensive review. International Journal of Molecular Sciences 25:893 doi: 10.3390/ijms25020893 |
| [43] |
Gutterson N, Reuber TL. 2004. Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology 7:465−71 doi: 10.1016/j.pbi.2004.04.007 |
| [44] |
Liu AC, Cheng CP. 2017. Pathogen-induced ERF68 regulates hypersensitive cell death in tomato. Molecular Plant Pathology 18:1062−74 doi: 10.1111/mpp.12460 |
| [45] |
Yang H, Sun Y, Wang H, Zhao T, Xu X, et al. 2021. Genome-wide identification and functional analysis of the ERF2 gene family in response to disease resistance against Stemphylium lycopersici in tomato. BMC Plant Biology 21:72 doi: 10.1186/s12870-021-02848-3 |
| [46] |
Ouyang Z, Liu S, Huang L, Hong Y, Li X, et al. 2016. Tomato SIERFA1, SIERF. B4, SIERF.C3 and SIERF.A3, members of B3 group of ERF family, are required for resistance to Botrytis cinerea. Frontiers in Plant Science 7:01964 doi: 10.3389/fpls.2016.01964 |
| [47] |
Zhou J, Tang X, Martin GB. 1997. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. The EMBO Journal 16:3207−18 doi: 10.1093/emboj/16.11.3207 |
| [48] |
Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, et al. 2002. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. The Plant Cell 14:817−31 doi: 10.1105/tpc.000794 |
| [49] |
Zhang H, Zhang D, Chen J, Yang Y, Huang Z, et al. 2004. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Molecular Biology 55:825−34 doi: 10.1007/s11103-005-2140-3 |
| [50] |
Deng H, Pei Y, Xu X, Du X, Xue Q, et al. 2024. Ethylene-MPK8-ERF.C1-PR module confers resistance against Botrytis cinerea in tomato fruit without compromising ripening. New Phytologist 242:592−609 doi: 10.1111/nph.19632 |
| [51] |
Klay I, Gouia S, Liu M, Mila I, Khoudi H, et al. 2018. Ethylene Response Factors (ERF) are differentially regulated by different abiotic stress types in tomato plants. Plant Science 274:137−45 doi: 10.1016/j.plantsci.2018.05.023 |
| [52] |
Pan Y, Seymour GB, Lu C, Hu Z, Chen X, et al. 2012. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Reports 31:349−60 doi: 10.1007/s00299-011-1170-3 |
| [53] |
Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, et al. 2004. Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Molecular Biology 55:183−92 doi: 10.1007/s11103-004-0113-6 |
| [54] |
Zhang HW, Huang ZJ, Xie BY, Chen Q, Tian X, et al. 2004. The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 220:262−70 doi: 10.1007/s00425-004-1347-x |
| [55] |
Muday GK, Rahman A, Binder BM. 2012. Auxin and ethylene: collaborators or competitors? Trends in Plant Science 17: 181-95 |
| [56] |
Gambhir P, Singh V, Parida A, Raghuvanshi U, Kumar R, et al. 2022. Ethylene response factor ERF. D7 activates auxin response factor 2 paralogs to regulate tomato fruit ripening. Plant Physiology 190: 2775-96 |
| [57] |
Thagun C, Imanishi S, Kudo T, Nakabayashi R, Ohyama K, et al. 2016. Jasmonate-responsive ERF transcription factors regulate steroidal glycoalkaloid biosynthesis in tomato. Plant & Cell Physiology 57:961−75 doi: 10.1093/pcp/pcw067 |
| [58] |
Hu C, Wei C, Ma Q, Dong H, Shi K, et al. 2021. Ethylene response factors 15 and 16 trigger jasmonate biosynthesis in tomato during herbivore resistance. Plant Physiology 185:1182−97 doi: 10.1093/plphys/kiaa089 |
| [59] |
Ding F, Wang C, Xu N, Wang M. 2022. The ethylene response factor SlERF.B8 triggers jasmonate biosynthesis to promote cold tolerance in tomato. Environmental and Experimental Botany 203:105073 doi: 10.1016/j.envexpbot.2022.105073 |
| [60] |
Park MH, Malka SK. 2022. Gibberellin delays metabolic shift during tomato ripening by inducing auxin signaling. Frontiers in Plant Science 13:1045761 doi: 10.3389/fpls.2022.1045761 |
| [61] |
Wu M, Liu K, Li H, Li Y, Zhu Y, et al. 2024. Gibberellins involved in fruit ripening and softening by mediating multiple hormonal signals in tomato. Horticulture Research 11:uhad275 doi: 10.1093/hr/uhad275 |
| [62] |
Zhang M, Yuan B, Leng P. 2009. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. Journal of Experimental Botany 60:1579−88 doi: 10.1093/jxb/erp026 |
| [63] |
Hao Y, Xiang L, Lai J, Li C, Zhong Y, et al. 2023. SlERF.H6 mediates the orchestration of ethylene and gibberellin signaling that suppresses bitter-SGA biosynthesis in tomato. New Phytologist 239:1353−67 doi: 10.1111/nph.19048 |
| [64] |
Sun YF, Liang B, Wang J, Kai WB, Chen P, et al. 2018. SlPti4 affects regulation of fruit ripening, seed germination and stress responses by modulating ABA signaling in tomato. Plant and Cell Physiology 59:1956−65 doi: 10.1093/pcp/pcy111 |
| [65] |
Li Z, Tian Y, Xu J, Fu X, Gao J, et al. 2018. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000. Plant Physiology and Biochemistry 132:683−95 doi: 10.1016/j.plaphy.2018.08.022 |
| [66] |
Hu C, Wang M, Zhu C, Wu S, Li J, et al. 2024. A transcriptional regulation of ERF15 contributes to ABA-mediated cold tolerance in tomato. Plant Cell and Environment 47:1334−47 doi: 10.1111/pce.14816 |
| [67] |
Chen C, Zhang M, Zhang M, Yang M, Dai S, et al. 2023. ETHYLENE-INSENSITIVE 3-LIKE 2 regulates β-carotene and ascorbic acid accumulation in tomatoes during ripening. Plant Physiology 192:2067−80 doi: 10.1093/plphys/kiad151 |
| [68] |
Yu G, Li C, Zhang L, Zhu G, Munir S, et al. 2020. An allelic variant of GAME9 determines its binding capacity with the GAME17 promoter in the regulation of steroidal glycoalkaloid biosynthesis in tomato. Journal of Experimental Botany 71:2527−36 doi: 10.1093/jxb/eraa014 |
| [69] |
Bai F, Shu P, Deng H, Wu Y, Chen Y, et al. 2024. A distal enhancer guides the negative selection of toxic glycoalkaloids during tomato domestication. Nature Communications 15:2894 doi: 10.1038/s41467-024-47292-7 |
| [70] |
Wu C, Men C, Yan L, Zhang J, Wang Y, et al. 2024. The ERF transcription factor SlERF7 promotes UV-C-induced biosynthesis of phenolic compounds in tomato. Scientia Horticulturae 338:113643 doi: 10.1016/j.scienta.2024.113643 |
| [71] |
Di Matteo A, Ruggieri V, Sacco A, Rigano MM, Carriero F, et al. 2013. Identification of candidate genes for phenolics accumulation in tomato fruit. Plant Science 205:87−96 doi: 10.1016/j.plantsci.2013.02.001 |