[1]

Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, et al. 2014. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nature Neuroscience 17:667−69

doi: 10.1038/nn.3695
[2]

Mayes C, Lawson-Boyd E, Meloni M. 2022. Situating the father: strengthening interdisciplinary collaborations between sociology, history and the emerging POHaD paradigm. Nutrients 14:3884

doi: 10.3390/nu14193884
[3]

Lismer A, Kimmins S. 2023. Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development. Nature Communications 14:2142

doi: 10.1038/s41467-023-37820-2
[4]

Tully CA, Alesi S, McPherson NO, Sharkey DJ, Teong XT, et al. 2024. Assessing the influence of preconception diet on male fertility: a systematic scoping review. Human Reproduction Update 30:243−61

doi: 10.1093/humupd/dmad035
[5]

Akhatova A, Jones C, Coward K, Yeste M. 2025. How do lifestyle and environmental factors influence the sperm epigenome? Effects on sperm fertilising ability, embryo development, and offspring health. Clinical Epigenetics 17:7

doi: 10.1186/s13148-025-01815-1
[6]

Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, et al. 2010. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129−33

doi: 10.1038/nature09303
[7]

Muthusamy M, Pandian S, Shin EK, An HK, Sohn SI. 2024. Unveiling the imprinted dance: how parental genomes orchestrate seed development and hybrid success. Frontiers in Plant Science 15:1455685

doi: 10.3389/fpls.2024.1455685
[8]

Bird A. 2002. DNA methylation patterns and epigenetic memory. Genes & Development 16:6−21

doi: 10.1101/gad.947102
[9]

Jiang Y, Zhang H, Chen S, Ewart S, Holloway JW, et al. 2024. Intergenerational association of DNA methylation between parents and offspring. Scientific Reports 14:19812

doi: 10.1038/s41598-024-69317-3
[10]

Nagase H, Ghosh S. 2008. Epigenetics: differential DNA methylation in mammalian somatic tissues. The FEBS Journal 275:1617−23

doi: 10.1111/j.1742-4658.2008.06330.x
[11]

Kouzarides T. 2007. Chromatin modifications and their function. Cell 128:693−705

doi: 10.1016/j.cell.2007.02.005
[12]

Fitz-James MH, Cavalli G. 2022. Molecular mechanisms of transgenerational epigenetic inheritance. Nature Reviews Genetics 23:325−41

doi: 10.1038/s41576-021-00438-5
[13]

Skvortsova K, Iovino N, Bogdanović O. 2018. Functions and mechanisms of epigenetic inheritance in animals. Nature Reviews Molecular Cell Biology 19:774−90

doi: 10.1038/s41580-018-0074-2
[14]

Wu X, Hu S, Wang L, Li Y, Yu H. 2020. Dynamic changes of histone acetylation and methylation in bovine oocytes, zygotes, and preimplantation embryos. Journal of Experimental Zoology Part B, Molecular and Developmental Evolution 334:245−56

doi: 10.1002/jez.b.22943
[15]

Wenger A, Biran A, Alcaraz N, Redó-Riveiro A, Sell AC, et al. 2023. Symmetric inheritance of parental histones governs epigenome maintenance and embryonic stem cell identity. Nature Genetics 55:1567−78

doi: 10.1038/s41588-023-01476-x
[16]

Carvalheira LdR, Tríbulo P, Borges Á M, Hansen PJ. 2019. Sex affects immunolabeling for histone 3 K27me3 in the trophectoderm of the bovine blastocyst but not labeling for histone 3 K18ac. PLoS One 14:e0223570

doi: 10.1371/journal.pone.0223570
[17]

Liu S, Sharma U. 2023. Sperm RNA payload: implications for Intergenerational Epigenetic Inheritance. International Journal of Molecular Sciences 24:5889

doi: 10.3390/ijms24065889
[18]

Burton NO, Greer EL. 2022. Multigenerational epigenetic inheritance: transmitting information across generations. Seminars in Cell & Developmental Biology 127:121−32

doi: 10.1016/j.semcdb.2021.08.006
[19]

Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, et al. 2016. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351:391−96

doi: 10.1126/science.aad6780
[20]

Wang H, Wang Z, Zhou T, Morris D, Chen S, et al. 2023. Small RNA shuffling between murine sperm and their cytoplasmic droplets during epididymal maturation. Developmental Cell 58:779−790.E4

doi: 10.1016/j.devcel.2023.03.010
[21]

Tomar A, Gomez-Velazquez M, Gerlini R, Comas-Armangué G, Makharadze L, et al. 2024. Epigenetic inheritance of diet-induced and sperm-borne mitochondrial RNAs. Nature 630:720−27

doi: 10.1038/s41586-024-07472-3
[22]

Dupont C, Kappeler L, Saget S, Grandjean V, Lévy R. 2019. Role of miRNA in the transmission of metabolic diseases associated with paternal diet-induced obesity. Frontiers in Genetics 10:337

doi: 10.3389/fgene.2019.00337
[23]

Guo M, Luo C, Wang Z, Chen S, Morris D, et al. 2022. Uncoupling transcription and translation through miRNA-dependent poly(A) length control in haploid male germ cells. Development 149:dev199573

doi: 10.1242/dev.199573
[24]

Wu D, Khan FA, Huo L, Sun F, Huang C. 2022. Alternative splicing and microRNA: epigenetic mystique in male reproduction. RNA Biology 19:162−75

doi: 10.1080/15476286.2021.2024033
[25]

Conine CC, Sun F, Song L, Rivera-Pérez JA, Rando OJ. 2018. Small RNAs gained during epididymal transit of sperm are essential for embryonic development in mice. Developmental Cell 46:470−480.E3

doi: 10.1016/j.devcel.2018.06.024
[26]

Nätt D, Kugelberg U, Casas E, Nedstrand E, Zalavary S, et al. 2019. Human sperm displays rapid responses to diet. PLoS Biology 17:e3000559

doi: 10.1371/journal.pbio.3000559
[27]

Chen Q, Yan W, Duan E. 2016. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nature Reviews Genetics 17:733−43

doi: 10.1038/nrg.2016.106
[28]

Chen Q, Zhang X, Shi J, Yan M, Zhou T. 2021. Origins and evolving functionalities of tRNA-derived small RNAs. Trends in Biochemical Sciences 46:790−804

doi: 10.1016/j.tibs.2021.05.001
[29]

Kan RL, Chen J, Sallam T. 2022. Crosstalk between epitranscriptomic and epigenetic mechanisms in gene regulation. Trends in Genetics 38:182−93

doi: 10.1016/j.tig.2021.06.014
[30]

Bure IV, Nemtsova MV, Kuznetsova EB. 2022. Histone modifications and non-coding RNAs: mutual epigenetic regulation and role in pathogenesis. International Journal of Molecular Sciences 23:5801

doi: 10.3390/ijms23105801
[31]

Wei JW, Huang K, Yang C, Kang CS. 2017. Non-coding RNAs as regulators in epigenetics . Oncology Reports 37:3−9

doi: 10.3892/or.2016.5236
[32]

Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, et al. 2010. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084−96

doi: 10.1016/j.cell.2010.12.008
[33]

Jahan-Mihan A, Leftwich J, Berg K, Labyak C, Nodarse RR, et al. 2024. The impact of parental preconception nutrition, body weight, and exercise habits on offspring health outcomes: a narrative review. Nutrients 16:4276

doi: 10.3390/nu16244276
[34]

Watkins AJ, Sinclair KD. 2014. Paternal low protein diet affects adult offspring cardiovascular and metabolic function in mice. American Journal of Physiology Heart and Circulatory Physiology 306:H1444−H1452

doi: 10.1152/ajpheart.00981.2013
[35]

Watkins AJ, Dias I, Tsuro H, Allen D, Emes RD, et al. 2018. Paternal diet programs offspring health through sperm- and seminal plasma-specific pathways in mice. Proceedings of the National Academy of Sciences of the United States of America 115:10064−69

doi: 10.1073/pnas.1806333115
[36]

Watkins AJ, Sirovica S, Stokes B, Isaacs M, Addison O, et al. 2017. Paternal low protein diet programs preimplantation embryo gene expression, fetal growth and skeletal development in mice. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1863:1371−81

doi: 10.1016/j.bbadis.2017.02.009
[37]

da Cruz RS, Carney EJ, Clarke J, Cao H, Cruz MI, et al. 2018. Paternal malnutrition programs breast cancer risk and tumor metabolism in offspring. Breast Cancer Research 20:99

doi: 10.1186/s13058-018-1034-7
[38]

Pepin AS, Lafleur C, Lambrot R, Dumeaux V, Kimmins S. 2022. Sperm histone H3 lysine 4 tri-methylation serves as a metabolic sensor of paternal obesity and is associated with the inheritance of metabolic dysfunction. Molecular Metabolism 59:101463

doi: 10.1016/j.molmet.2022.101463
[39]

Morgan HL, Paganopoulou P, Akhtar S, Urquhart N, Philomin R, et al. 2020. Paternal diet impairs F1 and F2 offspring vascular function through sperm and seminal plasma specific mechanisms in mice. The Journal of Physiology 598(4):699−715

doi: 10.1113/JP278270
[40]

Yoshida K, Maekawa T, Ly NH, Fujita SI, Muratani M, et al. 2020. ATF7-dependent epigenetic changes are required for the intergenerational effect of a paternal low-protein diet. Molecular Cell 78:445−458.e6

doi: 10.1016/j.molcel.2020.02.028
[41]

Anderson LM, Riffle L, Wilson R, Travlos GS, Lubomirski MS, et al. 2006. Preconceptional fasting of fathers alters serum glucose in offspring of mice. Nutrition 22:327−31

doi: 10.1016/j.nut.2005.09.006
[42]

de Rooij SR, Painter RC, Roseboom TJ, Phillips DIW, Osmond C, et al. 2006. Glucose tolerance at age 58 and the decline of glucose tolerance in comparison with age 50 in people prenatally exposed to the Dutch famine. Diabetologia 49:637−43

doi: 10.1007/s00125-005-0136-9
[43]

Painter RC, Osmond C, Gluckman P, Hanson M, Phillips DI, et al. 2008. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG: an International Journal of Obstetrics & Gynaecology 115:1243−49

doi: 10.1111/j.1471-0528.2008.01822.x
[44]

Bleker LS, de Rooij SR, Painter RC, van der Velde N, Roseboom TJ. 2016. Prenatal undernutrition and physical function and frailty at the age of 68 years: the Dutch famine birth cohort study. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences 71:1306−14

doi: 10.1093/gerona/glw081
[45]

Bleker LS, de Rooij SR, Painter RC, Ravelli AC, Roseboom TJ. 2021. Cohort profile: the Dutch famine birth cohort (DFBC)- a prospective birth cohort study in the Netherlands. BMJ Open 11:e042078

doi: 10.1136/bmjopen-2020-042078
[46]

Wiegersma AM, Boots A, Roseboom TJ, de Rooij SR. 2023. Exposure to the Dutch famine in early gestation and cognitive function and decline in older age. Nutrients 15:293

doi: 10.3390/nu1502029
[47]

Ly L, Chan D, Aarabi M, Landry M, Behan NA, et al. 2017. Intergenerational impact of paternal lifetime exposures to both folic acid deficiency and supplementation on reproductive outcomes and imprinted gene methylation. Molecular Human Reproduction 23:461−77

doi: 10.1093/molehr/gax029
[48]

Okae H, Chiba H, Hiura H, Hamada H, Sato A, et al. 2014. Genome-wide analysis of DNA methylation dynamics during early human development. PLoS Genetics 10:e1004868

doi: 10.1371/journal.pgen.1004868
[49]

Lambrot R, Xu C, Saint-Phar S, Chountalos G, Cohen T, et al. 2013. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nature Communications 4:2889

doi: 10.1038/ncomms3889
[50]

Siklenka K, Erkek S, Godmann M, Lambrot R, McGraw S, et al. 2015. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science 350:aab2006

doi: 10.1126/science.aab2006
[51]

Mejos KK, Kim HW, Lim EM, Chang N. 2013. Effects of parental folate deficiency on the folate content, global DNA methylation, and expressions of FRα, IGF-2 and IGF-1R in the postnatal rat liver. Nutrition Research and Practice 7:281−6

doi: 10.4162/nrp.2013.7.4.281
[52]

McCoy CR, Jackson NL, Brewer RL, Moughnyeh MM, Smith DL Jr., et al. 2018. A paternal methyl donor depleted diet leads to increased anxiety- and depression-like behavior in adult rat offspring. Bioscience Reports 38:BSR20180730

doi: 10.1042/BSR20180730
[53]

Sahara Y, Matsuzawa D, Ishii D, Fuchida T, Goto T, et al. 2019. Paternal methyl donor deficient diets during development affect male offspring behavior and memory-related gene expression in mice. Developmental Psychobiology 61:17−28

doi: 10.1002/dev.21801
[54]

Carapeto PV, Ornellas F, Mandarim-de-Lacerda CA, Aguila MB. 2018. Liver metabolism in adult male mice offspring: consequences of a maternal, paternal or both maternal and paternal high-fructose diet. Journal of Developmental Origins of Health and Disease 9:450−59

doi: 10.1017/S2040174418000235
[55]

Zhang X, Dong Y, Sun G, Hasan AA, Tian M, et al. 2019. Paternal programming of liver function and lipid profile induced by a paternal pre-conceptional unhealthy diet: potential association with altered gut microbiome composition. Kidney and Blood Pressure Research 44:133−48

doi: 10.1159/000497487
[56]

Saftić Martinović L, Mladenić T, Lovrić D, Ostojić S, Dević Pavlić S. 2024. Decoding the epigenetics of infertility: mechanisms, environmental influences, and therapeutic strategies. Epigenomes 8:34

doi: 10.3390/epigenomes8030034
[57]

Yang J, Tang R, Chen S, Chen Y, Yuan K, et al. 2023. Exposure to high-sugar diet induces transgenerational changes in sweet sensitivity and feeding behavior via H3K27me3 reprogramming. Elife 12:e85365

doi: 10.7554/eLife.85365
[58]

Sertorio MN, César H, de Souza EA, Mennitti LV, Santamarina AB, et al. 2022. Parental high-fat high-sugar diet intake programming inflammatory and oxidative parameters of reproductive health in male offspring. Frontiers in Cell and Developmental Biology 10:867127

doi: 10.3389/fcell.2022.867127
[59]

Sertorio MN, Estadella D, Ribeiro DA, Pisani LP. 2023. Could parental high-fat intake program the reproductive health of male offspring? A review. Critical Reviews in Food Science and Nutrition 63:2074−81

doi: 10.1080/10408398.2021.1970509
[60]

Ornellas F, Carapeto PV, Aguila MB, Mandarim-de-Lacerda CA. 2020. Sex-linked changes and high cardiovascular risk markers in the mature progeny of father, mother, or both father and mother consuming a high-fructose diet. Nutrition 71:110612

doi: 10.1016/j.nut.2019.110612
[61]

Sharma U. 2019. Paternal contributions to offspring health: role of sperm small RNAs in intergenerational transmission of epigenetic information. Frontiers in Cell and Developmental Biology 7:215

doi: 10.3389/fcell.2019.00215
[62]

Claycombe-Larson KG, Bundy AN, Roemmich JN. 2020. Paternal high-fat diet and exercise regulate sperm miRNA and histone methylation to modify placental inflammation, nutrient transporter mRNA expression and fetal weight in a sex-dependent manner. The Journal of Nutritional Biochemistry 81:108373

doi: 10.1016/j.jnutbio.2020.108373
[63]

Deshpande SS, Nemani H, Arumugam G, Ravichandran A, Balasinor NH. 2020. High-fat diet-induced and genetically inherited obesity differentially alters DNA methylation profile in the germline of adult male rats. Clinical Epigenetics 12:179

doi: 10.1186/s13148-020-00974-7
[64]

Deshpande SSS, Bera P, Khambata K, Balasinor NH. 2023. Paternal obesity induces epigenetic aberrations and gene expression changes in placenta and fetus. Molecular Reproduction and Development 90:109−26

doi: 10.1002/mrd.23660
[65]

Lin J, Gu W, Huang H. 2022. Effects of paternal obesity on fetal development and pregnancy complications: a prospective clinical cohort study. Frontiers in Endocrinology 13:826665

doi: 10.3389/fendo.2022.826665
[66]

Binder NK, Hannan NJ, Gardner DK. 2012. Paternal diet-induced obesity retards early mouse embryo development, mitochondrial activity and pregnancy health. PLoS One 7:e52304

doi: 10.1371/journal.pone.0052304
[67]

Leisegang K, Sengupta P, Agarwal A, Henkel R. 2021. Obesity and male infertility: mechanisms and management. Andrologia 53:e13617

doi: 10.1111/and.13617
[68]

Jusic A, Thomas PB, Wettinger SB, Dogan S, Farrugia R, et al. 2022. Noncoding RNAs in age-related cardiovascular diseases. Ageing Research Reviews 77:101610

doi: 10.1016/j.arr.2022.101610
[69]

Masuyama H, Mitsui T, Eguchi T, Tamada S, Hiramatsu Y. 2016. The effects of paternal high-fat diet exposure on offspring metabolism with epigenetic changes in the mouse adiponectin and leptin gene promoters. American Journal of Physiology Endocrinology and Metabolism 311:E236−E245

doi: 10.1152/ajpendo.00095.2016
[70]

Donato J Jr. 2023. Programming of metabolism by adipokines during development. Nature Reviews Endocrinology 19:385−97

doi: 10.1038/s41574-023-00828-1
[71]

Wang B, Xia L, Zhu D, Zeng H, Wei B, et al. 2022. Paternal high-fat diet altered sperm 5'tsRNA-Gly-GCC is associated with enhanced gluconeogenesis in the offspring. Frontiers in Molecular Biosciences 9:857875

doi: 10.3389/fmolb.2022.857875
[72]

Chen Q, Yan M, Cao Z, Li X, Zhang Y, et al. 2016. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351:397−400

doi: 10.1126/science.aad7977
[73]

Prell A, Sen MO, Potabattula R, Bernhardt L, Dittrich M, et al. 2022. Species-specific paternal age effects and sperm methylation levels of developmentally important genes. Cells 11:731

doi: 10.3390/cells11040731
[74]

Ashapkin V, Suvorov A, Pilsner JR, Krawetz SA, Sergeyev O. 2023. Age-associated epigenetic changes in mammalian sperm: implications for offspring health and development. Human Reproduction Updat 29:24−44

doi: 10.1093/humupd/dmac033
[75]

Pilsner JR, Shershebnev A, Wu H, Marcho C, Dribnokhodova O, et al. 2021. Aging-induced changes in sperm DNA methylation are modified by low dose of perinatal flame retardants. Epigenomics 13:285−97

doi: 10.2217/epi-2020-0404
[76]

Miyahara K, Tatehana M, Kikkawa T, Osumi N. 2023. Investigating the impact of paternal aging on murine sperm miRNA profiles and their potential link to autism spectrum disorder. Scientific Reports 13:20608

doi: 10.1038/s41598-023-47878-z
[77]

Krug A, Wöhr M, Seffer D, Rippberger H, Sungur AÖ, et al. 2020. Advanced paternal age as a risk factor for neurodevelopmental disorders: a translational study. Molecular Autism 11:54

doi: 10.1186/s13229-020-00345-2
[78]

Guo Y, Bai D, Liu W, Liu Y, Zhang Y, et al. 2021. Altered sperm tsRNAs in aged male contribute to anxiety-like behavior in offspring. Aging Cell 20:e13466

doi: 10.1111/acel.13466
[79]

Xie K, Ryan DP, Pearson BL, Henzel KS, Neff F, et al. 2018. Epigenetic alterations in longevity regulators, reduced life span, and exacerbated aging-related pathology in old father offspring mice. Proceedings of the National Academy of Sciences of the United States of America 115:E2348−e57

[80]

Zhang C, Yan L, Qiao J. 2022. Effect of advanced parental age on pregnancy outcome and offspring health. Journal of Assisted Reproduction and Genetics 39:1969−86

doi: 10.1007/s10815-022-02533-w
[81]

Wiener-Megnazi Z, Auslender R, Dirnfeld M. 2012. Advanced paternal age and reproductive outcome. Asian Journal of Andrology 14:69−76

doi: 10.1038/aja.2011.69
[82]

Dviri M, Madjunkova S, Koziarz A, Madjunkov M, Mashiach J, et al. 2021. Is there an association between paternal age and aneuploidy? Evidence from young donor oocyte-derived embryos: a systematic review and individual patient data meta-analysis. Human Reproduction Update 27:486−500

doi: 10.1093/humupd/dmaa052
[83]

Chan PTK, Robaire B. 2022. Advanced paternal age and future generations. Frontiers in Endocrinology 13:897101

doi: 10.3389/fendo.2022.897101
[84]

Nybo Andersen AM, Urhoj SK. 2017. Is advanced paternal age a health risk for the offspring? Fertility and Sterility 107:312−18

doi: 10.1016/j.fertnstert.2016.12.019
[85]

Feng YA, Chen WJ, Lin MC, Hsu JS, Cheng CF, et al. 2025. Paternal age, de novo mutation, and age at onset among co-affected schizophrenia sib-pairs: whole-genome sequencing in multiplex families. Molecular Psychiatry

doi: 10.1038/s41380-025-02942-0
[86]

Denomme MM, McCallie BR, Haywood ME, Parks JC, Schoolcraft WB, et al. 2024. Paternal aging impacts expression and epigenetic markers as early as the first embryonic tissue lineage differentiation. Human Genomics 18:32

doi: 10.1186/s40246-024-00599-4
[87]

Thomas KN, Basel A, Reitz H, Toler R, Thomas KR, et al. 2025. Maternal, paternal, and dual-parental alcohol exposures result in both overlapping and distinct impacts on behavior in adolescent offspring. Alcohol 124:65−77

doi: 10.1016/j.alcohol.2025.01.004
[88]

Nieto SJ, Harding MJ, Nielsen DA, Kosten TA. 2022. Paternal alcohol exposure has task- and sex-dependent behavioral effect in offspring. Alcoholism: Clinical and Experimental Research 46:2191−202

doi: 10.1111/acer.14964
[89]

Conner KE, Bottom RT, Huffman KJ. 2020. The impact of paternal alcohol consumption on offspring brain and behavioral development. Alcoholism: Clinical and Experimental Research 44:125−40

doi: 10.1111/acer.14245
[90]

Easey KE, Sharp GC. 2021. The impact of paternal alcohol, tobacco, caffeine use and physical activity on offspring mental health: a systematic review and meta-analysis. Reproductive Health 18:214

doi: 10.1186/s12978-021-01266-w
[91]

Ceccanti M, Coccurello R, Carito V, Ciafrè S, Ferraguti G, et al. 2016. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring. Addiction Biology 21:776−87

doi: 10.1111/adb.12255
[92]

Rompala GR, Homanics GE. 2019. Intergenerational effects of alcohol: a review of paternal preconception ethanol exposure studies and epigenetic mechanisms in the male germline. Alcoholism: Clinical and Experimental Research 43:1032−45

doi: 10.1111/acer.14029
[93]

Bielawski DM, Zaher FM, Svinarich DM, Abel EL. 2002. Paternal alcohol exposure affects sperm cytosine methyltransferase messenger RNA levels. Alcoholism, Clinical and Experimental Research 26:347−51

doi: 10.1111/j.1530-0277.2002.tb02544.x
[94]

Chang RC, Wang H, Bedi Y, Golding MC. 2019. Preconception paternal alcohol exposure exerts sex-specific effects on offspring growth and long-term metabolic programming. Epigenetics & Chromatin 12:9

doi: 10.1186/s13072-019-0254-0
[95]

Bedi Y, Chang RC, Gibbs R, Clement TM, Golding MC. 2019. Alterations in sperm-inherited noncoding RNAs associate with late-term fetal growth restriction induced by preconception paternal alcohol use. Reproductive Toxicology 87:11−20

doi: 10.1016/j.reprotox.2019.04.006
[96]

Cambiasso MY, Gotfryd L, Stinson MG, Birolo S, Salamone G, et al. 2022. Paternal alcohol consumption has intergenerational consequences in male offspring. Journal of Assisted Reproduction and Genetics 39:441−59

doi: 10.1007/s10815-021-02373-0
[97]

Goldberg LR, Gould TJ. 2019. Multigenerational and transgenerational effects of paternal exposure to drugs of abuse on behavioral and neural function. European Journal of Neuroscience 50:2453−66

doi: 10.1111/ejn.14060
[98]

Nieto SJ, Kosten TA. 2019. Who's your daddy? Behavioral and epigenetic consequences of paternal drug exposure. International Journal of Developmental Neuroscience 78:109−21

doi: 10.1016/j.ijdevneu.2019.07.002
[99]

Yen AM, Boucher BJ, Chiu SY, Fann JC, Chen SL, et al. 2016. Longer duration and earlier age of onset of paternal betel chewing and smoking increase metabolic syndrome risk in human offspring, independently, in a community-based screening program in Taiwan. Circulation 134:392−404

doi: 10.1161/CIRCULATIONAHA.116.021511
[100]

Northstone K, Golding J, Davey Smith G, Miller LL, Pembrey M. 2014. Prepubertal start of father's smoking and increased body fat in his sons: further characterisation of paternal transgenerational responses. European Journal of Human Genetics 22:1382−86

doi: 10.1038/ejhg.2014.31
[101]

Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA. 2021. Epigenetic signatures underlying inflammation: an interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflammation Research 70:29−49

doi: 10.1007/s00011-020-01425-y