[1]

Ling C, Groop L. 2009. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58:2718−25

doi: 10.2337/db09-1003
[2]

Kierszenbaum AL. 2002. Genomic imprinting and epigenetic reprogramming: unearthing the garden of forking paths. Molecular Reproduction and Development 63:269−72

doi: 10.1002/mrd.90011
[3]

Montalvo-Casimiro M, González-Barrios R, Meraz-Rodriguez MA, Juárez-González VT, Arriaga-Canon C, et al. 2020. Epidrug repurposing: discovering new faces of old acquaintances in cancer therapy. Frontiers in Oncology 10:605386

doi: 10.3389/fonc.2020.605386
[4]

Kanwal R, Gupta S. 2012. Epigenetic modifications in cancer. Clinical Genetics 81:303−11

doi: 10.1111/j.1399-0004.2011.01809.x
[5]

Ganesan A, Arimondo PB, Rots MG, Jeronimo C, Berdasco M. 2019. The timeline of epigenetic drug discovery: from reality to dreams. Clinical Epigenetics 11:174

doi: 10.1186/s13148-019-0776-0
[6]

MacDonald WA. 2012. Epigenetic mechanisms of genomic imprinting: common themes in the regulation of imprinted regions in mammals, plants, and insects. Genetics research international 2012:585024

doi: 10.1155/2012/585024
[7]

Lee HT, Oh S, Ro DH, Yoo H, Kwon YW. 2020. The key role of DNA methylation and histone acetylation in epigenetics of atherosclerosis. Journal of lipid and atherosclerosis 9:419

doi: 10.12997/jla.2020.9.3.419
[8]

Laird PW. 2003. The power and the promise of DNA methylation markers. Nature Reviews Cancer 3:253−66

doi: 10.1038/nrc1045
[9]

Feinberg AP, Tycko B. 2004. The history of cancer epigenetics. Nature Reviews Cancer 4:143−53

doi: 10.1038/nrc1279
[10]

Jones PA, Baylin SB. 2007. The epigenomics of cancer. Cell 128:683−92

doi: 10.1016/j.cell.2007.01.029
[11]

Rodríguez-Paredes M, Esteller M. 2011. Cancer epigenetics reaches mainstream oncology. Nature Medicine 17:330−39

doi: 10.1038/nm.2305
[12]

Xu TH, Liu M, Zhou XE, Liang G, Zhao G, et al. 2020. Structure of nucleosome-bound DNA methyltransferases DNMT3A and DNMT3B. Nature 586:151−55

doi: 10.1038/s41586-020-2747-1
[13]

Yin H, Zhou Y, Xu Z, Chen L, Zhang D, et al. 2013. An electrochemical assay for DNA methylation, methyltransferase activity and inhibitor screening based on methyl binding domain protein. Biosensors and Bioelectronics 41:492−97

doi: 10.1016/j.bios.2012.09.010
[14]

Phillips T. 2008. The role of methylation in gene expression. Nature Education 1:116

[15]

Esteller M. 2002. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21:5427−40

doi: 10.1038/sj.onc.1205600
[16]

Zhang Y, Reinberg D. 2001. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes & Development 15:2343−60

doi: 10.1101/gad.927301
[17]

Seto E, Yoshida M. 2014. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harbor Perspectives in Biology 6:a018713

doi: 10.1101/cshperspect.a018713
[18]

Ranjan S, Sharma PK. 2016. Effect of environmental chemical exposures on epigenetics of diseases: a systematic review. International Journal of Life Sciences Scientific Research 2(4):531−38

doi: 10.21276/ijlssr.2016.2.4.18
[19]

Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, et al. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129:823−37

doi: 10.1016/j.cell.2007.05.009
[20]

Silva MC, Bodor DL, Stellfox ME, Martins NM, Hochegger H, et al. 2012. Cdk activity couples epigenetic centromere inheritance to cell cycle progression. Developmental Cell 22:52−63

doi: 10.1016/j.devcel.2011.10.014
[21]

Cedar H, Bergman Y. 2009. Linking DNA methylation and histone modification: patterns and paradigms. Nature Reviews Genetics 10:295−304

doi: 10.1038/nrg2540
[22]

Fernández-Barrena MG, Arechederra M, Colyn L, Berasain C, Avila MA. 2020. Epigenetics in hepatocellular carcinoma development and therapy: The tip of the iceberg. JHEP Reports 2:100167

doi: 10.1016/j.jhepr.2020.100167
[23]

Edamoto Y, Hara A, Biernat W, Terracciano L, Cathomas G, et al. 2003. Alterations of RB1, p53 and Wnt pathways in hepatocellular carcinomas associated with hepatitis C, hepatitis B and alcoholic liver cirrhosis. International Journal of Cancer 106:334−41

doi: 10.1002/ijc.11254
[24]

Martin J, Dufour JF. 2008. Tumor suppressor and hepatocellular carcinoma. World Journal of Gastroenterology 14(11):1720−33

[25]

Cui F, Blach S, Mingiedi CM, Gonzalez MA, Alaama AS, et al. 2023. Global reporting of progress towards elimination of hepatitis B and hepatitis C. The lancet Gastroenterology & hepatology 8:332−42

doi: 10.1016/S2468-1253(22)00386-7
[26]

Butt S, Idrees M, Akbar H, ur Rehman I, Awan Z, et al. 2010. The changing epidemiology pattern and frequency distribution of hepatitis C virus in Pakistan. Infection, Genetics and Evolution 10:595−600

doi: 10.1016/j.meegid.2010.04.012
[27]

Rehman IU, Idrees M, Ali M, Ali L, Butt S, et al. 2011. Hepatitis C virus genotype 3a with phylogenetically distinct origin is circulating in Pakistan. Genetic Vaccines and Therapy 9:2

doi: 10.1186/1479-0556-9-2
[28]

Chevaliez S, Pawlotsky JM. 2006. HCV genome and life cycle. In Hepatitis C viruses: genomes and molecular biology, ed. Tan SL. Norfolk, UK: Horizon Bioscience. www.ncbi.nlm.nih.gov/books/NBK1630/

[29]

Lopez-Serra L, Ballestar E, Fraga MF, Alaminos M, Setien F, et al. 2006. A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer. Cancer Research 66:8342−46

doi: 10.1158/0008-5472.CAN-06-1932
[30]

Zhou M, Tang J, Fan J, Wen X, Shen J, et al. 2024. Recent progress in retinoblastoma: pathogenesis, presentation, diagnosis and management. Asia-Pacific Journal of Ophthalmology 13:100058

doi: 10.1016/j.apjo.2024.100058
[31]

Joseph B, Mamatha G, Raman G, Shanmugam MP, Kumaramanickavel G. 2004. Methylation status of RB1 promoter in Indian retinoblastoma patients. Cancer Biology & Therapy 3:184−87

doi: 10.4161/cbt.3.2.620
[32]

Ohtani-Fujita N, Fujita T, Aoike A, Osifchin N, Robbins P, et al. 1993. CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene 8(4):1063−67

[33]

Reis AH, Vargas FR, Lemos B. 2012. More epigenetic hits than meets the eye: microRNAs and genes associated with the tumorigenesis of retinoblastoma. Frontiers in Genetics 3:284

doi: 10.3389/fgene.2012.00284
[34]

Stirzaker C, Millar DS, Paul CL, Warnecke PM, Harrison J, et al. 1997. Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Research 57:2229−37

[35]

Janostiak R, Torres-Sanchez A, Posas F, de Nadal E. 2022. Understanding retinoblastoma post-translational regulation for the design of targeted cancer therapies. Cancers 14:1265

doi: 10.3390/cancers14051265
[36]

Rotchell JM, Ulnal E, Van Beneden RJ, Ostrander GK. 2001. Retinoblastoma gene mutations in chemically induced liver tumor samples of Japanese medaka (Oryzias latipes). Marine Biotechnology 3:S44−S49

doi: 10.1007/s10126-001-0026-1
[37]

Zhang C, Li Z, Cheng Y, Jia F, Li R, et al. 2007. CpG island methylator phenotype association with elevated serum α-fetoprotein level in hepatocellular carcinoma. Clinical Cancer Research 13:944−52

doi: 10.1158/1078-0432.CCR-06-2268
[38]

Zhang C, Guo X, Jiang G, Zhang L, Yang Y, et al. 2008. CpG island methylator phenotype association with upregulated telomerase activity in hepatocellular carcinoma. International Journal of Cancer 123:998−1004

doi: 10.1002/ijc.23650
[39]

Hayslip J, Montero A. 2006. Tumor suppressor gene methylation in follicular lymphoma: a comprehensive review. Molecular cancer 5:44

doi: 10.1186/1476-4598-5-44
[40]

Hahne JC, Mirchev M, Kotzev I, Lampis A, Valeri N. 2017. Biomarkers for monitoring response to therapies and detection of acquired resistance in advanced gastrointestinal cancers. In Frontiers in Clinical Drug Research - Anti-Cancer Agents, ed. Atta-ur-Rahman. Vol. 4. pp. 1−73. doi: 10.2174/9781681084817117040003

[41]

Kaneto H, Sasaki S, Yamamoto H, Itoh F, Toyota M, et al. 2001. Detection of hypermethylation of the p16INK4A gene promoter in chronic hepatitis and cirrhosis associated with hepatitis B or C virus. Gut 48:372−77

doi: 10.1136/gut.48.3.372
[42]

Lin Q, Chen LB, Tang YM, Wang J. 2005. Promoter hypermethylation of p16 gene and DAPK gene in sera from hepatocellular carcinoma (HCC) patients. Chinese Journal of Cancer Research 17:250−54

doi: 10.1007/s11670-005-0020-7
[43]

Csepregi A, Ebert MP, Röcken C, Schneider-Stock R, Hoffmann J, et al. 2010. Promoter methylation of CDKN2A and lack of p16 expression characterize patients with hepatocellular carcinoma. BMC Cancer 10:317

doi: 10.1186/1471-2407-10-317
[44]

Lv X, Ye G, Zhang X, Huang T. 2017. p16 Methylation was associated with the development, age, hepatic viruses infection of hepatocellular carcinoma, and p16 expression had a poor survival: a systematic meta-analysis (PRISMA). Medicine 96:e8106

doi: 10.1097/MD.0000000000008106
[45]

Pogribny IP, Rusyn I. 2014. Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Letters 342:223−30

doi: 10.1016/j.canlet.2012.01.038
[46]

Wang LH, Wu CF, Rajasekaran N, Shin YK. 2019. Loss of tumor suppressor gene function in human cancer: an overview. Cellular Physiology and Biochemistry 51:2647−93

doi: 10.1159/000495956
[47]

Tannapfel A, Busse C, Geiβler F, Witzigmann H, Hauss J, et al. 2002. INK4a-ARF alterations in liver cell adenoma. Gut 51:253−58

doi: 10.1136/gut.51.2.253
[48]

Hayashi T, Tamori A, Nishikawa M, Morikawa H, Enomoto M, et al. 2009. Differences in molecular alterations of hepatocellular carcinoma between patients with a sustained virological response and those with hepatitis C virus infection. Liver International 29:126−32

doi: 10.1111/j.1478-3231.2008.01772.x
[49]

Yu M, Xu W, Jie Y, Pang J, Huang S, et al. 2021. Identification and validation of three core genes in p53 signaling pathway in hepatitis B virus-related hepatocellular carcinoma. World Journal of Surgical Oncology 19:66

doi: 10.1186/s12957-021-02174-w
[50]

Zekri AN, Bahnasy AA, Shoeab FEM, Mohamed WS, El-Dahshan DH, et al. 2014. Methylation of multiple genes in hepatitis C virus associated hepatocellular carcinoma. Journal of Advanced Research 5:27−40

doi: 10.1016/j.jare.2012.11.002
[51]

Graham C, LeBrun DP. 2015. Tumor suppressors in follicular lymphoma. Leukemia & Lymphoma 56:1981−88

[52]

Xu G, Zhou X, Xing J, Xiao Y, Jin B, et al. 2020. Identification of RASSF1A promoter hypermethylation as a biomarker for hepatocellular carcinoma. Cancer Cell International 20:547

doi: 10.1186/s12935-020-01638-5
[53]

Saelee P, Petmitr S, Wongkham S, Chariyalertsak S, Homcha-cm P. 2010. Detection of DNA methylation of p16INK4a in hepatocellular carcinoma by methylation specific-polymerase chain reaction

[54]

Seo YL, Heo S, Jang KL. 2015. Hepatitis C virus core protein overcomes H2O2-induced apoptosis by downregulating p14 expression via DNA methylation. Journal of General Virology 96:822−32

doi: 10.1099/vir.0.000032
[55]

Zhang Y, Li RQ, Feng XD, Zhang YH, Wang L. 2014. Down-regulation of PTEN by HCV core protein through activating nuclear factor-κB. International Journal of Clinical and Experimental Pathology 7:7351

[56]

Pasha HF, Mohamed RH, Radwan MI. 2019. RASSF1A and SOCS1 genes methylation status as a noninvasive marker for hepatocellular carcinoma. Cancer Biomarkers 24:241−47

doi: 10.3233/CBM-181638
[57]

Yoshimura A, Suzuki M, Sakaguchi R, Hanada T, Yasukawa H. 2012. SOCS, inflammation, and autoimmunity. Frontiers in Immunology 3:20

doi: 10.3389/fimmu.2012.00020
[58]

Zhu Y, Ning Z, Li X, Lin Z. 2024. Machine learning algorithms identify target genes and the molecular mechanism of matrine against diffuse large B-cell lymphoma. Current Computer-Aided Drug Design 20:847−59

doi: 10.2174/1573409920666230821102806
[59]

Kiran M, Chawla YK, Kaur J. 2009. Methylation profiling of tumor suppressor genes and oncogenes in hepatitis virus-related hepatocellular carcinoma in northern India. Cancer genetics and cytogenetics 195:112−19

doi: 10.1016/j.cancergencyto.2009.06.021
[60]

Han TS, Ban HS, Hur K, Cho HS. 2018. The epigenetic regulation of HCC metastasis. International Journal of Molecular Sciences 19:3978

doi: 10.3390/ijms19123978
[61]

Baro L, Islam A, Brown HM, Bell ZA, Juanes MA. 2023. APC-driven actin nucleation powers collective cell dynamics in colorectal cancer cells. iScience 26:106583

doi: 10.1016/j.isci.2023.106583
[62]

Bao J, Geng X, Hou C, Zhao Y, Huo D, et al. 2018. A simple and universal electrochemical assay for sensitive detection of DNA methylation, methyltransferase activity and screening of inhibitors. Journal of Electroanalytical Chemistry 814:144−52

doi: 10.1016/j.jelechem.2018.02.060
[63]

Matsuda Y, Ichida T, Genda T, Yamagiwa S, Aoyagi Y, et al. 2003. Loss of p16 contributes to p27 sequestration by cyclin D1-cyclin-dependent kinase 4 complexes and poor prognosis in hepatocellular carcinoma. Clinical Cancer Research 9:3389−96

[64]

Moribe T, Iizuka N, Miura T, Kimura N, Tamatsukuri S, et al. 2009. Methylation of multiple genes as molecular markers for diagnosis of a small, well-differentiated hepatocellular carcinoma. International Journal of Cancer 125:388−97

doi: 10.1002/ijc.24394
[65]

Liu LL, Zhang MF, Pan YH, Yun JP, Zhang CZ. 2014. NORE1A sensitises cancer cells to sorafenib-induced apoptosis and indicates hepatocellular carcinoma prognosis. Tumour Biology 35:1763−74

doi: 10.1007/s13277-013-1184-2
[66]

Bai Y, Xu J, Li D, Zhang X, Chen D, et al. 2023. HepaClear, a blood-based panel combining novel methylated CpG sites and protein markers, for the detection of early-stage hepatocellular carcinoma. Clinical Epigenetics 15:99

doi: 10.1186/s13148-023-01508-7
[67]

Inokawa Y, Nomoto S, Hishida M, Hayashi M, Kanda M, et al. 2013. Detection of doublecortin domain-containing 2 (DCDC2), a new candidate tumor suppressor gene of hepatocellular carcinoma, by triple combination array analysis. Journal of Experimental & Clinical Cancer Research 32:65

doi: 10.1186/1756-9966-32-65
[68]

Zhao P, Malik S, Xing S. 2021. Epigenetic mechanisms involved in HCV-induced hepatocellular carcinoma (HCC). Frontiers in Oncology 11:67792

doi: 10.3389/fonc.2021.677926
[69]

Ma L. 2014. Pathology features and molecular genetic mechanisms of hepatocellular carcinoma development in patients with hepatitis C associated liver cirrhosis. Hereditary Genetics: Current Research 3:e109

doi: 10.4172/2161-1041.1000e109
[70]

Song MA, Kwee SA, Tiirikainen M, Hernandez BY, Okimoto G, et al. 2016. Comparison of genome-scale DNA methylation profiles in hepatocellular carcinoma by viral status. Epigenetics 11:464−74

doi: 10.1080/15592294.2016.1151586
[71]

Khalid A, Hussain T, Manzoor S, Saalim M, Khaliq S. 2017. PTEN: a potential prognostic marker in virus-induced hepatocellular carcinoma. Tumour Biology 39:1

doi: 10.1177/1010428317705754
[72]

Chang CN, Feng MJ, Chen YL, Yuan RH, Jeng YM. 2013. p15PAF is an Rb/E2F-regulated S-phase protein essential for DNA synthesis and cell cycle progression. PLoS One 8:e61196

doi: 10.1371/journal.pone.0061196
[73]

Saleh T, Khasawneh AI, Himsawi N, Abu-Raideh J, Ejeilat V, et al. 2022. Senolytic therapy: a potential approach for the elimination of oncogene-induced senescent HPV-positive cells. International Journal of Molecular Sciences 23:15512

doi: 10.3390/ijms232415512
[74]

Zhu S, Cao J, Sun H, Liu K, Li Y, et al. 2016. p18 inhibits reprogramming through inactivation of Cdk4/6. Scientific Reports 6:31085

doi: 10.1038/srep31085
[75]

García-Cruz R, Camats M, Calin GA, Liu CG, Volinia S, et al. 2015. The role of p19 and p21 H-Ras proteins and mutants in miRNA expression in cancer and a Costello syndrome cell model. BMC Medical Genetics 16:46

doi: 10.1186/s12881-015-0184-z
[76]

Sun C, Wang G, Wrighton KH, Lin H, Zhou S, et al. 2016. Regulation of p27Kip1 phosphorylation and G1 cell cycle progression by protein phosphatase PPM1G. American Journal of Cancer Research 6:2207−20

[77]

Ding J, Xu K, Sun S, Qian C, Yin S, et al. 2020. SOCS1 blocks G1-S transition in hepatocellular carcinoma by reducing the stability of the CyclinD1/CDK4 complex in the nucleus. Aging 12:3962−75

doi: 10.18632/aging.102865
[78]

Ponomarev AV, Solodovnik AA, Mkrtchyan AS, Finashutina YP, Turba AA, et al. 2018. Relationship between deletion and point mutations of p53 and drug resistance to aranoza in human melanoma cell lines. Russian Journal of Biotherapy 17:64−69

doi: 10.17650/1726-9784-2018-17-1-64-69
[79]

Ghazaleh HA, Chow RS, Choo SL, Pham D, Olesen JD, et al. 2010. 14-3-3 mediated regulation of the tumor suppressor protein, RASSF1A. Apoptosis 15:117−27

doi: 10.1007/s10495-009-0451-6
[80]

Munakata T, Nakamura M, Liang Y, Li K, Lemon SM. 2005. Down-regulation of the retinoblastoma tumor suppressor by the hepatitis C virus NS5B RNA-dependent RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America 102:18159−64

doi: 10.1073/pnas.0505605102
[81]

Ye C, Zhu D, Lu J, Zhang X, Li L. 2016. The diagnostic value of suppressor of cytokine signaling-1 (SOCS-1) methylation for human hepatocellular carcinoma (HCC): a meta-analysis based on data from 15 studies. International Journal of Clinical and Experimental Medicine 9:15146−56

[82]

Barr AR, Cooper S, Heldt FS, Butera F, Stoy H, et al. 2017. DNA damage during S-phase mediates the proliferation-quiescence decision in the subsequent G1 via p21 expression. Nature Communications 8:14728

doi: 10.1038/ncomms14728
[83]

Zhu H, Zhang L, Wu S, Teraishi F, Davis JJ, et al. 2004. Induction of S-phase arrest and p21 overexpression by a small molecule 2[3-(2,3-dichlorophenoxy)propyl] amino] ethanol in correlation with activation of ERK. Oncogene 23:4984−92

doi: 10.1038/sj.onc.1207645
[84]

Bittar C, Shrivastava S, Bhanja Chowdhury J, Rahal P, Ray RB. 2013. Hepatitis C virus NS2 protein inhibits DNA damage pathway by sequestering p53 to the cytoplasm. PLoS One 8:e62581

doi: 10.1371/journal.pone.0062581
[85]

Zhang X, Jia S, Yang S, Yang Y, Yang T, et al. 2012. Arsenic trioxide induces G2/M arrest in hepatocellular carcinoma cells by increasing the tumor suppressor PTEN expression. Journal of Cellular Biochemistry 113:3528−35

doi: 10.1002/jcb.24230
[86]

Ticli G, Cazzalini O, Stivala LA, Prosperi E. 2022. Revisiting the function of p21CDKN1A in DNA repair: The influence of protein interactions and stability. International Journal of Molecular Sciences 23:7058

doi: 10.3390/ijms23137058
[87]

Alfieri C, Zhang S, Barford D. 2017. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biology 7:170204

doi: 10.1098/rsob.170204
[88]

Lala V, Zubair M, Minter D. 2023. Liver function tests. Treasure Island (FL): StatPearls Publishing. www.ncbi.nlm.nih.gov/books/NBK482489/

[89]

Dharel N, Kato N, Muroyama R, Taniguchi H, Otsuka M, et al. 2008. Potential contribution of tumor suppressor p53 in the host defense against hepatitis C virus. Hepatology 47:1136−49

doi: 10.1002/hep.22176
[90]

Kwak J, Jang KL. 2018. Hepatitis C virus core protein activates p53 to inhibit E6-associated protein expression via promoter hypermethylation. Journal of Life Science 28:1007−15

doi: 10.5352/JLS.2018.28.9.1007
[91]

Banerjee A, Ray RB, Ray R. 2010. Oncogenic potential of hepatitis C virus proteins. Viruses 2:2108

doi: 10.3390/v2092108
[92]

Park SH, Lim JS, Lim SY, Tiwari I, Jang KL. 2011. Hepatitis C virus core protein stimulates cell growth by down-regulating p16 expression via DNA methylation. Cancer Letters 310:61−68

doi: 10.1016/j.canlet.2011.06.012
[93]

Ni Q, Gao Y, Yang X, Zhang Q, Guo B, et al. 2022. Analysis of the network pharmacology and the structure-activity relationship of glycyrrhizic acid and glycyrrhetinic acid. Frontiers in Pharmacology 13:1001018

doi: 10.3389/fphar.2022.1001018
[94]

D'souza S, Lau KC, Coffin CS, Patel TR. 2020. Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World Journal of Gastroenterology 26:5759

doi: 10.3748/wjg.v26.i38.5759
[95]

Bieluszewski T, Prakash S, Roulé T, Wagner D. 2023. The role and activity of SWI/SNF chromatin remodelers. Annual Review of Plant Biology 74:139−63

doi: 10.1146/annurev-arplant-102820-093218
[96]

Mittal P, Roberts CWM. 2020. The SWI/SNF complex in cancer — biology, biomarkers and therapy. Nature Reviews Clinical Oncology 17:435−48

doi: 10.1038/s41571-020-0357-3
[97]

Nagaraju GP, Dariya B, Kasa P, Peela S, El-Rayes BF. 2022. Epigenetics in hepatocellular carcinoma. Seminars in Cancer Biology 86:622−32

doi: 10.1016/j.semcancer.2021.07.017
[98]

Jancewicz I, Siedlecki JA, Sarnowski TJ, Sarnowska E. 2019. BRM: the core ATPase subunit of SWI/SNF chromatin-remodelling complex—a tumour suppressor or tumour-promoting factor? Epigenetics & Chromatin 12:68

doi: 10.1186/s13072-019-0315-4
[99]

Aftab A, Afzal S, Idrees M, Shahid AA. 2021. p53 and rb promoter methylation in hepatitis C virus-related chronic hepatitis and hepatocellular carcinoma. Future Virology 16:15−25

doi: 10.2217/fvl-2020-0154
[100]

Cha S, Park I, Jang KL. 2021. Hepatitis C virus core protein activates proteasomal activator 28 gamma to downregulate p16 levels via ubiquitin-independent proteasomal degradation. Heliyon 7:e06134

doi: 10.1016/j.heliyon.2021.e06134
[101]

Arora P, Kim EO, Jung JK, Jang KL. 2008. Hepatitis C virus core protein downregulates E-cadherin expression via activation of DNA methyltransferase 1 and 3b. Cancer letters 261:244−52

doi: 10.1016/j.canlet.2007.11.033
[102]

Chen X, Ma J, Wang XA, Zi T, Qian D, et al. 2022. CCNB1 and AURKA are critical genes for prostate cancer progression and castration-resistant prostate cancer resistant to vinblastine. Frontiers in Endocrinology 13:1106175

doi: 10.3389/fendo.2022.1106175
[103]

Kwak J, Shim JH, Tiwari I, Jang KL. 2016. Hepatitis C virus core protein inhibits E6AP expression via DNA methylation to escape from ubiquitin-dependent proteasomal degradation. Cancer Letters 380:59−68

doi: 10.1016/j.canlet.2016.06.008
[104]

Zhang Y, Li Z, Chen M, Chen H, Zhong Q, et al. 2019. Identification of a new eight-long noncoding RNA molecular signature for breast cancer survival prediction. DNA and Cell Biology 38:1529−39

doi: 10.1089/dna.2019.5059
[105]

Choudhary HB, Mandlik SK, Mandlik DS. 2023. Role of p53 suppression in the pathogenesis of hepatocellular carcinoma. World Journal of Gastrointestinal Pathophysiology 14:46

doi: 10.4291/wjgp.v14.i3.46
[106]

Vescovo T, Refolo G, Vitagliano G, Fimia GM, Piacentini M. 2016. Molecular mechanisms of hepatitis C virus–induced hepatocellular carcinoma. Clinical Microbiology and Infection 22:853−61

doi: 10.1016/j.cmi.2016.07.019
[107]

Domovitz T, Gal-Tanamy M. 2021. Tracking down the epigenetic footprint of HCV-induced hepatocarcinogenesis. Journal of Clinical Medicine 10:551

doi: 10.3390/jcm10030551
[108]

Ma J, He Y, Li F, Han L, You C, et al. 2024. Segment anything in medical images. Nature Communications 15:654

doi: 10.1038/s41467-024-44824-z
[109]

Garbulowski M, Mosca R, Gallardo-Dodd CJ, Kutter C, Sonnhammer ELL. 2024. Comprehensive analysis of the RBP regulome reveals functional modules and drug candidates in liver cancer. bioRxiv Preprint

doi: 10.1101/2024.09.04.611258
[110]

Lin Y, Zheng J, Mai Z, Lin P, Lu Y, et al. 2024. Unveiling the veil of RNA binding protein phase separation in cancer biology and therapy. Cancer Letters 601:217160

doi: 10.1016/j.canlet.2024.217160
[111]

Zheng Y, Hlady RA, Joyce BT, Robertson KD, He C, et al. 2019. DNA methylation of individual repetitive elements in hepatitis C virus infection-induced hepatocellular carcinoma. Clinical Epigenetics 11:145

doi: 10.1186/s13148-019-0733-y
[112]

Shukla R, Upton KR, Muñoz-Lopez M, Gerhardt DJ, Fisher ME, et al. 2013. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 153:101−11

doi: 10.1016/j.cell.2013.02.032
[113]

Cordaux R, Batzer MA. 2009. The impact of retrotransposons on human genome evolution. Nature Reviews Genetics 10:691−703

doi: 10.1038/nrg2640
[114]

Zheng Y, Joyce BT, Liu L, Zhang Z, Kibbe WA, et al. 2017. Prediction of genome-wide DNA methylation in repetitive elements. Nucleic Acids Research 45:8697−711

doi: 10.1093/nar/gkx587
[115]

Li VSW, Ng SS, Boersema PJ, Low TY, Karthaus WR, et al. 2012. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell 149:1245−56

doi: 10.1016/j.cell.2012.05.002
[116]

Clevers H, Nusse R. 2012. Wnt/β-catenin signaling and disease. Cell 149:1192−205

doi: 10.1016/j.cell.2012.05.012
[117]

Jiang X, Tan J, Li J, Kivimäe S, Yang X, et al. 2008. DACT3 is an epigenetic regulator of Wnt/β-catenin signaling in colorectal cancer and is a therapeutic target of histone modifications. Cancer Cell 13:529−41

doi: 10.1016/j.ccr.2008.04.019
[118]

Malcomson FC, Willis ND, McCallum I, Xie L, Ibero-Baraibar I, et al. 2017. Effects of supplementation with nondigestible carbohydrates on fecal calprotectin and on epigenetic regulation of SFRP1 expression in the large-bowel mucosa of healthy individuals. The American Journal of Clinical Nutrition 105:400−10

doi: 10.3945/ajcn.116.135657
[119]

Quan H, Zhou F, Nie D, Chen Q, Cai X, et al. 2014. Hepatitis C virus core protein epigenetically silences SFRP1 and enhances HCC aggressiveness by inducing epithelial–mesenchymal transition. Oncogene 33:2826−35

doi: 10.1038/onc.2013.225
[120]

Li KK, Li F, Li QS, Yang K, Jin B. 2013. DNA methylation as a target of epigenetic therapeutics in cancer. Anti-Cancer Agents in Medicinal Chemistry 13:242−47

doi: 10.2174/1871520611313020009
[121]

Yoon H, Jang KL. 2022. Hepatitis B virus X protein and hepatitis C virus core protein cooperate to repress E-cadherin expression via DNA methylation. Heliyon 8

[122]

Chiam K, Centenera MM, Butler LM, Tilley WD, Bianco-Miotto T. 2011. GSTP1 DNA methylation and expression status is indicative of 5-aza-2′-deoxycytidine efficacy in human prostate cancer cells. PLoS One 6:e25634

doi: 10.1371/journal.pone.0025634
[123]

Dong Y, Wang A. 2014. Aberrant DNA methylation in hepatocellular carcinoma tumor suppression. Oncology Letters 8:963−68

doi: 10.3892/ol.2014.2301
[124]

Bhat V, Srinathan S, Pasini E, Angeli M, Chen E, et al. 2018. Epigenetic basis of hepatocellular carcinoma: A network-based integrative meta-analysis. World Journal of Hepatology 10:155

doi: 10.4254/wjh.v10.i1.155
[125]

Heim MH, Thimme R. 2014. Innate and adaptive immune responses in HCV infections. Journal of Hepatology 61:S14−S25

doi: 10.1016/j.jhep.2014.06.035
[126]

Olaniyan MF, Olaniyan TB. 2024. Hepatitis C virus infection: innate and adaptive immunity, risk factors, genotypes and prevalence in Nigeria – a systematic review. Microbes and Infectious Diseases 5(2):551−70

doi: 10.21608/mid.2024.254688.1707
[127]

Serti E, Werner JM, Chattergoon M, Cox AL, Lohmann V, et al. 2014. Monocytes activate natural killer cells via inflammasome-induced interleukin 18 in response to hepatitis C virus replication. Gastroenterology 147:209−220.e3

doi: 10.1053/j.gastro.2014.03.046
[128]

Casey JL, Feld JJ, MacParland SA. 2019. Restoration of HCV-specific immune responses with antiviral therapy: a case for DAA treatment in acute HCV infection. Cells 8:317

doi: 10.3390/cells8040317
[129]

Wieland D, Kemming J, Schuch A, Emmerich F, Knolle P, et al. 2017. TCF1+ hepatitis C virus-specific CD8+ T cells are maintained after cessation of chronic antigen stimulation. Nature Communications 8:15050

doi: 10.1038/ncomms15050
[130]

Kwak J, Choi JH, Jang KL. 2017. Hepatitis C virus Core overcomes all-trans retinoic acid-induced apoptosis in human hepatoma cells by inhibiting p14 expression via DNA methylation. Oncotarget 8:85584

doi: 10.18632/oncotarget.20337
[131]

Higgs MR, Lerat H, Pawlotsky JM. 2010. Downregulation of Gadd45β expression by hepatitis C virus leads to defective cell cycle arrest. Cancer Research 70:4901−11

doi: 10.1158/0008-5472.CAN-09-4554
[132]

Chen XW, Lin X. 2014. Big data deep learning: challenges and perspectives. IEEE Access 2:514−25

doi: 10.1109/ACCESS.2014.2325029
[133]

Okamoto Y, Shinjo K, Shimizu Y, Sano T, Yamao K, et al. 2014. Hepatitis virus infection affects DNA methylation in mice with humanized livers. Gastroenterology 146:562−72

doi: 10.1053/j.gastro.2013.10.056
[134]

Nishida N, Iwanishi M, Minami T, Chishina H, Arizumi T, et al. 2015. Hepatic DNA methylation is affected by hepatocellular carcinoma risk in patients with and without hepatitis virus. Digestive Diseases 33:745−50

doi: 10.1159/000439098
[135]

Perez S, Kaspi A, Domovitz T, Davidovich A, Lavi-Itzkovitz A, et al. 2019. Hepatitis C virus leaves an epigenetic signature post cure of infection by direct-acting antivirals. PLoS Genetics 15:e1008181

doi: 10.1371/journal.pgen.1008181
[136]

Cano-Rodriguez D, Gjaltema RAF, Jilderda LJ, Jellema P, Dokter-Fokkens J, et al. 2016. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nature Communications 7:12284

doi: 10.1038/ncomms12284
[137]

Jiang W, Xia T, Liu C, Li J, Zhang W, et al. 2021. Remodeling the epigenetic landscape of cancer—application potential of flavonoids in the prevention and treatment of cancer. Frontiers in Oncology 11:705903

doi: 10.3389/fonc.2021.705903
[138]

Gholap AD, Chavda VP, Vaghela DA, Sawant SD, Hatvate NT, et al. 2024. A benefaction of flavonoids as epigenetic modulators for effective cancer treatment. Preprint

doi: 10.20944/preprints202407.0980.v1
[139]

Aanniz T, Bouyahya A, Balahbib A, El Kadri K, Khalid A, et al. 2024. Natural bioactive compounds targeting DNA methyltransferase enzymes in cancer: mechanisms insights and efficiencies. Chemico-Biological Interactions 392:110907

doi: 10.1016/j.cbi.2024.110907
[140]

Heidor R, Vargas-Mendez E, Moreno FS. 2019. Epigenetic aspects of hepatocellular carcinoma chemoprevention. In Epigenetics of Cancer Prevention, eds. Bishayee A, Bhatia D. Amsterdam: Elsevier. pp. 231-49. doi: 10.1016/b978-0-12-812494-9.00011-1

[141]

Chaturvedi CP, Somasundaram B, Singh K, Carpenedo RL, Stanford WL, et al. 2012. Maintenance of gene silencing by the coordinate action of the H3K9 methyltransferase G9a/KMT1C and the H3K4 demethylase Jarid1a/KDM5A. Proceedings of the National Academy of Sciences 109:18845−50

doi: 10.1073/pnas.1213951109
[142]

Chen QW, Zhu XY, Li YY, Meng ZQ. 2014. Epigenetic regulation and cancer. Oncology Reports 31:523−32

doi: 10.3892/or.2013.2913
[143]

Patnaik E, Madu C, Lu Y. 2023. Epigenetic modulators as therapeutic agents in cancer. International Journal of Molecular Sciences 24:14964

doi: 10.3390/ijms241914964
[144]

Costa PMdS, Sales SLA, Pinheiro DP, Pontes LQ, Maranhão SSA, et al. 2023. Epigenetic reprogramming in cancer: from diagnosis to treatment. Frontiers in Cell and Developmental Biology 11:1116805

doi: 10.3389/fcell.2023.1116805