| [1] |
Vangroenweghe F, Poulsen K, Thas O. 2021. Supplementation of a β-mannanase enzyme reduces post-weaning diarrhea and antibiotic use in piglets on an alternative diet with additional soybean meal. Porcine Health Management 7:8 doi: 10.1186/s40813-021-00191-5 |
| [2] |
Meng X, Slominski BA. 2005. Nutritive values of corn, soybean meal, canola meal, and peas for broiler chickens as affected by a multicarbohydrase preparation of cell wall degrading enzymes. Poultry Sciencei 84(8):1242−51 doi: 10.1093/ps/84.8.1242 |
| [3] |
Arsenault RJ, Lee JT, Latham R, Carter B, Kogut MH. 2017. Changes in immune and metabolic gut response in broilers fed β-mannanase in β-mannan-containing diets. Poultry Science 96(12):4307−16 doi: 10.3382/ps/pex246 |
| [4] |
Dawood A, Ma K. 2020. Applications of microbial β-mannanases. Frontiers in Bioengineering and Biotechnology 8:598630 doi: 10.3389/fbioe.2020.598630 |
| [5] |
Li YN, Meng K, Wang YR, Yao B. 2006. A β-mannanase from Bacillus subtilis B36: purification, properties, sequencing, gene cloning and expression in Escherichia coli. Zeitschrift für Naturforschung C 61(11−12):840−46 doi: 10.1515/znc-2006-11-1212 |
| [6] |
Zou XT, Qiao XJ, Xu ZR. 2006. Effect of β-mannanase (Hemicell) on growth performance and immunity of broilers. Poultry Science 12(85):2176−79 doi: 10.1093/ps/85.12.2176 |
| [7] |
Sornlake W, Matetaviparee P, Rattanaphan N, Tanapongpipat S, Eurwilaichitr L. 2013. β-Mannanase production by Aspergillus niger BCC4525 and its efficacy on broiler performance. Journal of the Science of Food and Agriculture 93(13):3345−51 doi: 10.1002/jsfa.6183 |
| [8] |
Caldas JV, Vignale K, Boonsinchai N, Wang J, Putsakum M, et al. 2018. The effect of β-mannanase on nutrient utilization and blood parameters in chicks fed diets containing soybean meal and guar gum. Poultry Science 7(98):2807−17 doi: 10.3382/ps/pey099 |
| [9] |
Hsiao H Y, Anderson D M, Dale N M. 2006. Levels of β-mannan in soybean meal. Poultry Science 85(8):1430−32 doi: 10.1093/ps/85.8.1430 |
| [10] |
Kim MC, Kim JH, Pitargue FM, Koo DY, Choi HS, et al. 2017. Effect of dietary β-mannanase on productive performance, egg quality, and utilization of dietary energy and nutrients in aged laying hens raised under hot climatic conditions. Asian-Australasian Journal of Animal Sciences 30(10):1450−55 doi: 10.5713/ajas.17.0269 |
| [11] |
Balasubramanian B, Ingale SL, Park JH, Rathi PC, Shanmugam S, et al. 2018. Inclusion of dietary β-mannanase improves performance and ileal digestibility and reduces ileal digesta viscosity of broilers fed corn-soybean meal based diet. Poultry Science 97(9):3097−101 doi: 10.3382/ps/pey157 |
| [12] |
Yoon KH, Chung S, Lim BL. 2008. Characterization of the Bacillus subtilis WL-3 mannanase from a recombinant Escherichia coli. The Journal of Microbiology 46(3):344−49 doi: 10.1007/s12275-008-0045-y |
| [13] |
Zhao Y, Xue Y, Ma Y. 2009. Recent advances and prospect on structural biology of β-mannanase - a review. Acta Microbiologica Sinica 49(9):1131−37 (in Chinese) doi: 10.3321/j.issn:0001-6209.2009.09.001 |
| [14] |
Moreira LS, Filho EF. 2008. An overview of mannan structure and mannan-degrading enzyme systems. Applied Microbiology and Biotechnology 2(79):165−78 doi: 10.1007/s00253-008-1423-4 |
| [15] |
Lee JT, Bailey CA, Cartwright AL. 2003. β-Mannanase ameliorates viscosity-associated depression of growth in broiler chickens fed guar germ and hull fractions. Poultry Science 82(12):1925−31 doi: 10.1093/ps/82.12.1925 |
| [16] |
Ko H, Kang HK, Moturi J, Ingale SL, Kim J. 2021. Supplementation of enzyme cocktail in chickens diet is an effective approach to increase the utilization of nutrient in wheat-based diets. Journal of Animal Science and Technology 63(1):69−76 doi: 10.5187/jast.2021.e1 |
| [17] |
Dhawan S, Kaur J. 2007. Microbial mannanases: an overview of production and applications. Critical Reviews in Biotechnology 4(27):197−216 doi: 10.1080/07388550701775919 |
| [18] |
Latham RE, Williams MP, Walters HG, Carter B, Lee JT. 2018. Efficacy of β-mannanase on broiler growth performance and energy utilization in the presence of increasing dietary galactomannan. Poultry Science 2(97):549−56 doi: 10.3382/ps/pex309 |
| [19] |
Meng X, Slominski BA, Nyachoti CM, Campbell LD, Guenter W. 2005. Degradation of cell wall polysaccharides by combinations of carbohydrase enzymes and their effect on nutrient utilization and broiler chicken performance. Poultry Science 1(84):37−47 doi: 10.1093/ps/84.1.37 |
| [20] |
Bhaturiwala R, Bagban M, Singh TA, Modi HA. 2021. Partial purification and application of β-mannanase for the preparation of low molecular weight galacto and glucomannan. Biocatalysis and Agricultural Biotechnology 36:102155 doi: 10.1016/j.bcab.2021.102155 |
| [21] |
Lai LP, Lee MT, Chen CS, Yu B, Lee TT. 2015. Effects of co-fermented Pleurotus eryngii stalk residues and soybean hulls by Aureobasidium pullulans on performance and intestinal morphology in broiler chickens. Poultry Science 94(12):2959−69 doi: 10.3382/ps/pev302 |
| [22] |
Ayoola AA, Malheiros RD, Grimes JL, Ferket PR. 2015. Effect of dietary exogenous enzyme supplementation on enteric mucosal morphological development and adherent mucin thickness in Turkeys. Frontiers in Veterinary Science 45(2):13 doi: 10.3389/fvets.2015.00045 |
| [23] |
Mangi MH, Hussain T, Shahid MS, Sabir N, Kalhoro MS, et al. 2021. Effects of flaxseed and multi-carbohydrase enzymes on the cecal microbiota and liver inflammation of laying hens. Animals 11(3):600 doi: 10.3390/ani11030600 |
| [24] |
Ferreira HC Jr, Hannas MI, Albino LT, Rostagno HS, Neme R, et al. 2016. Effect of the addition of β-mannanase on the performance, metabolizable energy, amino acid digestibility coefficients, and immune functions of broilers fed different nutritional levels. Poultry Science 8(95):1848−57 doi: 10.3382/ps/pew076 |
| [25] |
Zheng L, Cho SH, Kang CW, Lee KW, Kim KE, et al. 2020. Effects of β-mannanase on egg production performance, egg quality, intestinal microbiota, viscosity, and ammonia concentration in laying hens. Brazilian Journal of Poultry Science 1(22):eRBCA-2019-1180 doi: 10.1590/1806-9061-2019-1180 |
| [26] |
Ibuki M, Yoshimoto Y, Inui M, Fukui K, Yonemoto H, et al. 2014. Dietary mannanase-hydrolyzed copra meal improves growth and increases muscle weights in growing broiler chickens. Animal Science Journal 85(5):562−68 doi: 10.1111/asj.12178 |
| [27] |
Aziz Ur Rahman M, Jamal U, Anwar U, Bilal MQ, Riaz M, et al. 2021. Effects of potato peels inclusion with exogenous enzymes in broiler diet on growth performance, nutrients digestibility and carcass characteristics. Science Progress 4(104):312032468 doi: 10.1177/00368504211061972 |
| [28] |
Saleh AA, Nahla A, Amber K, Badawi N, Aboelenin SM, et al. 2022. Effect of dietary incorporation of peanut and linseed meals with or without enzyme mixture on physiological performance of broilers. Saudi Journal of Biological Sciences 6(29):103291 doi: 10.1016/j.sjbs.2022.103291 |
| [29] |
Kiarie EG, Steelman S, Martinez, Livingston K. 2021. Significance of single β-mannanase supplementation on performance and energy utilization in broiler chickens, laying hens, turkeys, sows, and nursery-finish pigs: a meta-analysis and systematic review. Translational Animal Science 5(4):txab160 doi: 10.1093/tas/txab160 |
| [30] |
Williams MP, Brown B, Rao S, Lee JT. 2014. Evaluation of β-mannanase and nonstarch polysaccharide-degrading enzyme inclusion separately or intermittently in reduced energy diets fed to male broilers on performance parameters and carcass yield. Journal of Applied Poultry Research 4(23):715−23 doi: 10.3382/japr.2014-01008 |
| [31] |
Ryu MH, Hosseindoust A, Kim JS, Choi YH, Lee SH, et al. 2017. β-Mannanase derived from Bacillus subtilis WL-7 improves the performance of commercial laying hens fed low or high mannan-based diets. The Journal of Poultry Science 54(3):212−17 doi: 10.2141/jpsa.0160021 |
| [32] |
Zhang X, Xu H, Gong L, Wang J, Fu J, et al. 2024. Mannanase improves the growth performance of broilers by alleviating inflammation of the intestinal epithelium and improving intestinal microbiota. Animal Nutrition 16:376−94 doi: 10.1016/j.aninu.2023.06.017 |
| [33] |
Pasare C, Medzhitov R. 2004. Toll-like receptors: linking innate and adaptive immunity. Microbes and Infection 6(15):1382−87 doi: 10.1016/j.micinf.2004.08.018 |
| [34] |
Liu Q, Liang X, Liang M, Qin R, Qin F, et al. 2020. Ellagic acid ameliorates renal ischemic-reperfusion injury through NOX4/JAK/STAT signaling pathway. Inflammation 43(1):298−309 doi: 10.1007/s10753-019-01120-z |
| [35] |
Dinarello CA. 2009. Immunological and inflammatory functions of the interleukin-1 family. Annual Review of Immunology 27:519−50 doi: 10.1146/annurev.immunol.021908.132612 |
| [36] |
Dinarello CA. 2011. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117(14):3720−32 doi: 10.1182/blood-2010-07-273417 |
| [37] |
Bazzoni F, Beutler B. 1996. The tumor necrosis factor ligand and receptor families. New England Journal of Medicine 334(26):1717−25 doi: 10.1056/NEJM199606273342607 |
| [38] |
Locksley RM, Killeen N, Lenardo MJ. 2001. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104(4):487−501 doi: 10.1016/s0092-8674(01)00237-9 |
| [39] |
Aggarwal BB. 2003. Signalling pathways of the TNF superfamily: a double-edged sword. Nature Reviews Immunology 3(9):745−56 doi: 10.1038/nri1184 |
| [40] |
Kany S, Vollrath J T, Relja B. 2019. Cytokines in Inflammatory Disease. International Journal of Molecular Sciences 20(23):6008 doi: 10.3390/ijms20236008 |
| [41] |
Wu G, Bryant MM, Voitle RA, Roland DA Sr. 2005. Effects of β-mannanase in corn-soy diets on commercial leghorns in second-cycle hens. Poultry Science 84(6):894−97 doi: 10.1093/ps/84.6.894 |
| [42] |
Li Y, Chen X, Chen Y, Li Z, Cao Y. 2010. Effects of β-mannanase expressed by Pichia pastoris in corn-soybean meal diets on broiler performance, nutrient digestibility, energy utilization and immunoglobulin levels. Animal Feed Science and Technology 159:59−67 doi: 10.1016/j.anifeedsci.2010.05.001 |
| [43] |
Rubartelli A, Lotze MT, Latz E, Manfredi A. 2013. Mechanisms of sterile inflammation. Frontiers in Immunology 22(4):398 doi: 10.3389/fimmu.2013.00398 |
| [44] |
Odetallah NH, Ferket PR, Grimes JL, McNaughton JL. 2002. Effect of mannan-endo-1,4-β-mannosidase on the growth performance of turkeys fed diets containing 44 and 48% crude protein soybean meal. Poultry Science 81(9):1322−31 doi: 10.1093/ps/81.9.1322 |
| [45] |
Tang Y, Zhang X, Wang Y, Guo Y, Zhu P, et al. 2022. Dietary ellagic acid ameliorated Clostridium perfringens-induced subclinical necrotic enteritis in broilers via regulating inflammation and cecal microbiota. Journal of Animal Science and Biotechnology 13(1):47 doi: 10.1186/s40104-022-00694-3 |
| [46] |
Salvo Romero E, Alonso Cotoner C, Pardo Camacho C, Casado Bedmar M, Vicario M. 2015. The intestinal barrier function and its involvement in digestive disease. Revista Espanola de Enfermedades Digestivas 107(11):686−96 doi: 10.17235/reed.2015.3846/2015 |
| [47] |
Nunes C, Freitas V, Almeida L, Laranjinha J. 2019. Red wine extract preserves tight junctions in intestinal epithelial cells under inflammatory conditions: implications for intestinal inflammation. Food & Function 10(3):1364−74 doi: 10.1039/c8fo02469c |
| [48] |
Parikh K, Antanaviciute A, Fawkner-Corbett D, Jagielowicz M, Aulicino A, et al. 2019. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 567(7746):49−55 doi: 10.1038/s41586-019-0992-y |
| [49] |
Liao P, Liao M, Li L, Tan B, Yin Y. 2017. Effect of deoxynivalenol on apoptosis, barrier function, and expression levels of genes involved in nutrient transport, mitochondrial biogenesis and function in IPEC-J2 cells. Toxicology Research 6(6):866−77 doi: 10.1039/c7tx00202e |
| [50] |
Maloy KJ, Powrie F. 2011. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474(7351):298−306 doi: 10.1038/nature10208 |
| [51] |
Birchenough GH, Johansson MV, Gustafsson JK, Bergström JH, Hansson GC. 2015. New developments in goblet cell mucus secretion and function. Mucosal Immunology 8(4):712−19 doi: 10.1038/mi.2015.32 |
| [52] |
Ling KH, Wan MLY, El-Nezami H, Wang M. 2016. Protective capacity of resveratrol, a natural polyphenolic compound, against deoxynivalenol-induced intestinal barrier dysfunction and bacterial translocation. Chemical Research in Toxicology 29(5):823−33 doi: 10.1021/acs.chemrestox.6b00001 |
| [53] |
Slifer ZM, Blikslager AT. 2020. The integral role of tight junction proteins in the repair of injured intestinal epithelium. International Journal of Molecular Sciences 21(3):972 doi: 10.3390/ijms21030972 |
| [54] |
Xie SZ, Liu B, Ye HY, Li QM, Pan LH, et al. 2019. Dendrobium huoshanense polysaccharide regionally regulates intestinal mucosal barrier function and intestinal microbiota in mice. Carbohydrate Polymers 206:149−62 doi: 10.1016/j.carbpol.2018.11.002 |
| [55] |
Zhang B, Li G, Shahid MS, Gan L, Fan H, et al. 2020. Dietary ʟ-arginine supplementation ameliorates inflammatory response and alters gut microbiota composition in broiler chickens infected with Salmonella enterica serovar Typhimurium. Poultry Science 99(4):1862−74 doi: 10.1016/j.psj.2019.10.049 |
| [56] |
Xu J, Liu Z, Zhan W, Jiang R, Yang C, et al. 2018. Recombinant TsP53 modulates intestinal epithelial barrier integrity via upregulation of ZO-1 in LPS-induced septic mice. Molecular Medicine Reports 17(1):1212−18 doi: 10.3892/mmr.2017.7946 |
| [57] |
Madara JL, Nash S, Moore R, Atisook K. 1990. Structure and function of the intestinal epithelial barrier in health and disease. Monographs in Pathology 31:306−24 |
| [58] |
Pantoja-Don Juan CA, Gómez-Verduzco G, Márquez-Mota CC, Téllez-Isaías G, Kwon YM, et al. 2022. Productive performance and cecum microbiota analysis of broiler chickens supplemented with β-mannanases and bacteriophages - a pilot study. Animals 12(2):169 doi: 10.3390/ani12020169 |
| [59] |
Gaggìa F, Mattarelli P, Biavati B. 2010. Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology 141(Suppl 1):S15−S28 doi: 10.1016/j.ijfoodmicro.2010.02.031 |
| [60] |
Wigley P. 2013. Immunity to bacterial infection in the chicken. Developmental and Comparative Immunology 41(3):413−17 doi: 10.1016/j.dci.2013.04.008 |
| [61] |
Hooper LV. 2009. Do symbiotic bacteria subvert host immunity? Nature Reviews Microbiology 7(5):367−74 doi: 10.1038/nrmicro2114 |
| [62] |
Belkaid Y, Harrison OJ. 2017. Homeostatic immunity and the microbiota. Immunity 46(4):562−76 doi: 10.1016/j.immuni.2017.04.008 |
| [63] |
Liu J, Wang HW, Lin L, Miao CY, Zhang Y, et al. 2019. Intestinal barrier damage involved in intestinal microflora changes in fluoride-induced mice. Chemosphere 234:409−18 doi: 10.1016/j.chemosphere.2019.06.080 |
| [64] |
Tang Q, Tang J, Ren X, Li C. 2020. Glyphosate exposure induces inflammatory responses in the small intestine and alters gut microbial composition in rats. Environmental Pollution 261:114129 doi: 10.1016/j.envpol.2020.114129 |
| [65] |
Yang WY, Lee Y, Lu H, Chou CH, Wang C. 2019. Analysis of gut microbiota and the effect of lauric acid against necrotic enteritis in Clostridium perfringens and Eimeria side-by-side challenge model. PLoS One 14(5):e0205784 doi: 10.1371/journal.pone.0205784 |
| [66] |
Mohammadigheisar M, Shouldice VL, Balasubramanian B, Kim IH. 2021. Effect of dietary supplementation of β-mannanase on growth performance, carcass characteristics, excreta microflora, blood constituents, and nutrient ileal digestibility in broiler chickens. Animal Bioscience 34(8):1342−49 doi: 10.5713/ab.20.0355 |
| [67] |
Gutierrez O, Zhang C, Caldwell DJ, Carey JB, Cartwright AL, et al. 2008. Guar meal diets as an alternative approach to inducing molt and improving Salmonella enteritidis resistance in late-phase laying hens. Poultry Science 87(3):536−40 doi: 10.3382/ps.2007-00337 |
| [68] |
Ibuki M, Fukui K, Yamauchi K. 2014. Effect of dietary mannanase-hydrolysed copra meal on growth performance and intestinal histology in broiler chickens. Journal of Animal Physiology and Animal Nutrition 98(4):636−42 doi: 10.1111/jpn.12105 |
| [69] |
Liu C, Finegold SM, Song Y, Lawson PA. 2008. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov. , isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology 58(Pt 8):1896−902 doi: 10.1099/ijs.0.65208-0 |
| [70] |
La Reau AJ, Suen G. 2018. The Ruminococci: key symbionts of the gut ecosystem. Journal of Microbiology 56(3):199−208 doi: 10.1007/s12275-018-8024-4 |
| [71] |
Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, et al. 2010. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. The American Journal of Gastroenterology 105(11):2420−28 doi: 10.1038/ajg.2010.281 |
| [72] |
Peterson CT, Sharma V, Elmén L, Peterson SN. 2015. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clinical & Experimental Immunology 179(3):363−77 doi: 10.1111/cei.12474 |
| [73] |
Zhou Y, Zhang M, Liu Q, Feng J. 2021. The alterations of tracheal microbiota and inflammation caused by different levels of ammonia exposure in broiler chickens. Poultry Science 100(2):685−96 doi: 10.1016/j.psj.2020.11.026 |
| [74] |
Jang J, Hur HG, Sadowsky MJ, et al. 2017. Environmental Escherichia coli: ecology and public health implications - a review. Journal of Applied Microbiology 123(3):570−81 doi: 10.1111/jam.13468 |
| [75] |
Kaper JB. 2005. Pathogenic Escherichia coli. International Journal of Medical Microbiology 295(6−7):355−56 doi: 10.1016/j.ijmm.2005.06.008 |
| [76] |
Barekatain MR, Noblet J, Wu SB, Iji PA, Choct M, et al. 2014. Effect of sorghum distillers dried grains with solubles and microbial enzymes on metabolizable and net energy values of broiler diets. Poultry Science 93(11):2793−801 doi: 10.3382/ps.2013-03766 |
| [77] |
Daskiran M, Teeter RG, Fodge D, Hsiao HY. 2004. An evaluation of endo-β-D-mannanase (Hemicell) effects on broiler performance and energy use in diets varying in β-mannan content. Poultry Science 83(4):662−68 doi: 10.1093/ps/83.4.662 |
| [78] |
Lee JT, Connor-Appleton S, Bailey CA, Cartwright AL. 2005. Effects of guar meal by-product with and without β-mannanase Hemicell on broiler performance. Poultry Science 84(8):1261−67 doi: 10.1093/ps/84.8.1261 |
| [79] |
Adeola O, Cowieson AJ. 2011. Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. Journal of Animal Science 89(10):3189−218 doi: 10.2527/jas.2010-3715 |