[1]

Jacob P, Hirt H, Bendahmane A. 2017. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal 15:405−14

doi: 10.1111/pbi.12659
[2]

Saibil H. 2013. Chaperone machines for protein folding, unfolding and disaggregation. Nature Reviews. Molecular Cell Biology 14:630−42

doi: 10.1038/nrm3658
[3]

Hu C, Yang J, Qi Z, Wu H, Wang B, et al. 2022. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm 3:e161

doi: 10.1002/mco2.161
[4]

Kregel KC. 2002. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. Journal of Applied Physiology (Bethesda, Md.: 1985) 92: 2177-86

[5]

Beckmann RP, Lovett M, Welch WJ. 1992. Examining the function and regulation of hsp 70 in cells subjected to metabolic stress. Journal of Cell Biology 117:1137−50

doi: 10.1083/jcb.117.6.1137
[6]

Srivastava P. 2002. Roles of heat-shock proteins in innate and adaptive immunity. Nature Reviews Immunology 2:185−94

doi: 10.1038/nri749
[7]

Haslbeck M, Vierling E. 2015. A first line of stress defense: small heat shock proteins and their function in protein homeostasis. Journal of Molecular Biology 427:1537−48

doi: 10.1016/j.jmb.2015.02.002
[8]

Multhoff G, Botzler C. 1998. Heat-shock proteins and the immune response. Annals of the New York Academy of Sciences 851:86−93

doi: 10.1111/j.1749-6632.1998.tb08980.x
[9]

Takayama S, Reed JC, Homma S. 2003. Heat-shock proteins as regulators of apoptosis. Oncogene 22:9041−47

doi: 10.1038/sj.onc.1207114
[10]

Van Eden W, Wick G, Albani S, Cohen I. 2007. Stress, heat shock proteins, and autoimmunity: how immune responses to heat shock proteins are to be used for the control of chronic inflammatory diseases. Annals of the New York Academy of Sciences 1113:217−37

doi: 10.1196/annals.1391.020
[11]

Feder ME, Hofmann GE. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual Review of Physiology 61:243−82

doi: 10.1146/annurev.physiol.61.1.243
[12]

Zolkiewski M, Zhang T, Nagy M. 2012. Aggregate reactivation mediated by the Hsp100 chaperones. Archives of Biochemistry and Biophysics 520:1−6

doi: 10.1016/j.abb.2012.01.012
[13]

Gao Y, Li JN, Pu JJ, Tao KX, Zhao XX, et al. 2022. Genome-wide identification and characterization of the HSP gene superfamily in apple snails (Gastropoda: Ampullariidae) and expression analysis under temperature stress. International Journal of Biological Macromolecules 222:2545−55

doi: 10.1016/j.ijbiomac.2022.10.038
[14]

Yang C, Wang L, Liu C, Zhou Z, Zhao X, et al. 2015. The polymorphisms in the promoter of HSP90 gene and their association with heat tolerance of bay scallop. Cell Stress & Chaperones 20:297−308

doi: 10.1007/s12192-014-0546-z
[15]

Bao Y, Wang Q, Liu H, Lin Z. 2011. A small HSP gene of bloody clam (Tegillarca granosa) involved in the immune response against Vibrio parahaemolyticus and lipopolysaccharide. Fish & Shellfish Immunology 30:729−33

doi: 10.1016/j.fsi.2010.12.002
[16]

Garcia de la serrana D, Pérez M, Nande M, Hernández-Urcera J, Pérez E, et al. 2020. Regulation of growth-related genes by nutrition in paralarvae of the common octopus (Octopus vulgaris). Gene 747:144670

doi: 10.1016/j.gene.2020.144670
[17]

Makhnevych T, Houry WA. 2012. The role of Hsp90 in protein complex assembly. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1823:674−82

doi: 10.1016/j.bbamcr.2011.09.001
[18]

Pratt WB. 1998. The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Proceedings of the Society for Experimental Biology and Medicine 217:420−34

doi: 10.3181/00379727-217-44252
[19]

Chen L, Yu F, Shi H, Wang Q, Xue Y, et al. 2022. Effect of salinity stress on respiratory metabolism, glycolysis, lipolysis, and apoptosis in Pacific oyster (Crassostrea gigas) during depuration stage. Journal of the Science of Food and Agriculture 102:2003−11

doi: 10.1002/jsfa.11539
[20]

Giffard RG, Yenari MA. 2004. Many mechanisms for hsp70 protection from cerebral ischemia. Journal of Neurosurgical Anesthesiology 16:53−61

doi: 10.1097/00008506-200401000-00010
[21]

Li C, Li L, Liu F, Ning X, Chen A, et al. 2011. Alternation of Venerupis philippinarum Hsp40 gene expression in response to pathogen challenge and heavy metal exposure. Fish & Shellfish Immunology 30:447−50

doi: 10.1016/j.fsi.2010.10.023
[22]

Guan H, Hu D, Zhao Z, Cai W, Zhou Q, et al. 2015. Role of Hsp-70 responses in cold acclimation of HUVEC-12 cells. International Journal of Clinical and Experimental Medicine 8:1880−87

[23]

Zhang HP, Liu W, An JQ, Yang P, Guo LH, et al. 2021. Transcriptome analyses and weighted gene coexpression network analysis reveal key pathways and genes involved in the rapid cold resistance of the Chinese white wax scale insect. Archives of Insect Biochemistry and Physiology 107:e21781

doi: 10.1002/arch.21781
[24]

Junprung W, Norouzitallab P, De Vos S, Tassanakajon A, Nguyen Viet D, et al. 2019. Sequence and expression analysis of HSP70 family genes in Artemia franciscana. Scientific Reports 9:8391

doi: 10.1038/s41598-019-44884-y
[25]

Lu HF, Du LN, Li ZQ, Chen XY, Yang JX. 2014. Morphological analysis of the Chinese Cipangopaludina species (Gastropoda; Caenogastropoda: Viviparidae). Zoological Research 35:510−27

doi: 10.13918/j.issn.2095-8137.2014.6.510
[26]

Tanaka M, Asahina H, Yamada N, Osumi M, Wada A, et al. 1987. Pattern and time course of cleavages in early development of the ovoviviparous pond snail, Sinotaia quadratus historica. Development, Growth & Differentiation 29:469−78

doi: 10.1111/j.1440-169X.1987.00469.x
[27]

Szybiak K, Gabała E, Adamski Z. 2022. Different dynamics of reproductive cell development in Oviparous Clausilia bidentata and Ovoviviparous Ruthenica filograna snails. Zoological Studies 61:e14

doi: 10.6620/ZS.2022.61-14
[28]

Fang L, Wang S, Sun X, Wang K. 2024. Bioaccumulation and biochemical impact of polyethylene terephthalate microplastics in Cipangopaludina chinensis: Tissue-specific analysis and homeostasis disruption. Aquatic Toxicology 277:107144

doi: 10.1016/j.aquatox.2024.107144
[29]

Chapman EEV, Moore C, Campbell LM. 2020. Evaluation of a nanoscale zero-valent iron amendment as a potential tool to reduce mobility, toxicity, and bioaccumulation of arsenic and mercury from wetland sediments. Environmental Science and Pollution Research 27:18757−72

doi: 10.1007/s11356-020-08347-6
[30]

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215:403−10

doi: 10.1016/S0022-2836(05)80360-2
[31]

Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, et al. 2018. HMMER web server: 2018 update. Nucleic Acids Research 46:W200−W204

doi: 10.1093/nar/gky448
[32]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[33]

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202−W208

doi: 10.1093/nar/gkp335
[34]

Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38:3022−27

doi: 10.1093/molbev/msab120
[35]

Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H. 2023. Tree Visualization By One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Research 51:W587−W592

doi: 10.1093/nar/gkad359
[36]

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20

doi: 10.1093/bioinformatics/btu170
[37]

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37:907−15

doi: 10.1038/s41587-019-0201-4
[38]

Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923−30

doi: 10.1093/bioinformatics/btt656
[39]

Zhai Z, Chen X, Wang J. 2008. Primer Design with Primer Premier 5.0. Northwest Medical Education 16(4):695−98

doi: 10.3969/j.issn.1006-2769.2008.04.042
[40]

Ben-Naim A. 2011. The rise and fall of the hydrophobic effect in protein folding and protein-protein association, and molecular recognition. Open Journal of Biophysics 1:1−7

doi: 10.4236/ojbiphy.2011.11001
[41]

Durell SR, Ben-Naim A. 2017. Hydrophobic-hydrophilic forces in protein folding. Biopolymers 107:e23020

doi: 10.1002/bip.23020
[42]

Luby-Phelps K. 2013. The physical chemistry of cytoplasm and its influence on cell function: an update. Molecular Biology of the Cell 24:2593−96

doi: 10.1091/mbc.e12-08-0617
[43]

Liu M, Sun W, Ma Z, Huang L, Wu Q, et al. 2019. Genome-wide identification of the SPL gene family in Tartary Buckwheat (Fagopyrum tataricum) and expression analysis during fruit development stages. BMC Plant Biology 19:299

doi: 10.1186/s12870-019-1916-6
[44]

Mehan MR, Freimer NB, Ophoff RA. 2004. A genome-wide survey of segmental duplications that mediate common human genetic variation of chromosomal architecture. Human Genomics 1:335−44

doi: 10.1186/1479-7364-1-5-335
[45]

Motojima F. 2015. How do chaperonins fold protein? Biophysics 11:93−102

doi: 10.2142/biophysics.11.9
[46]

Bondino HG, Valle EM, Ten Have A. 2012. Evolution and functional diversification of the small heat shock protein/α-crystallin family in higher plants. Planta 235:1299−313

doi: 10.1007/s00425-011-1575-9
[47]

Waters ER. 2013. The evolution, function, structure, and expression of the plant sHSPs. Journal of Experimental Botany 64:391−403

doi: 10.1093/jxb/ers355
[48]

Knox C, Luke GA, Blatch GL, Pesce ER. 2011. Heat shock protein 40 (Hsp40) plays a key role in the virus life cycle. Virus Research 160:15−24

doi: 10.1016/j.virusres.2011.06.013
[49]

Ling J, Zhao K, Cui YG, Li Y, Wang X, et al. 2011. Heat shock protein 10 regulated apoptosis of mouse ovarian granulosa cells. Gynecological Endocrinology 27:63−71

doi: 10.3109/09513590.2010.487594
[50]

Salinthone S, Tyagi M, Gerthoffer WT. 2008. Small heat shock proteins in smooth muscle. Pharmacology & Therapeutics 119:44−54

doi: 10.1016/j.pharmthera.2008.04.005
[51]

Li CS, Kausar S, Gul I, Yao XX, Li MY, et al. 2020. Heat shock protein 20 from Procambarus clarkii is involved in the innate immune responses against microbial infection. Developmental and Comparative Immunology 106:103638

doi: 10.1016/j.dci.2020.103638
[52]

Carmicle S, Steede NK, Landry SJ. 2007. Antigen three-dimensional structure guides the processing and presentation of helper T-cell epitopes. Molecular Immunology 44:1159−68

doi: 10.1016/j.molimm.2006.06.014
[53]

Gao XJ, Tang B, Liang HH, Yi L, Wei ZG. 2019. Selenium deficiency induced an inflammatory response by the HSP60 - TLR2-MAPKs signalling pathway in the liver of carp. Fish & Shellfish Immunology 87:688−94

doi: 10.1016/j.fsi.2019.02.017
[54]

Quintana FJ, Cohen IR. 2011. The HSP60 immune system network. Trends in Immunology 32:89−95

doi: 10.1016/j.it.2010.11.001
[55]

Cui Y, Liu P, Yu S, He J, Afedo SY, et al. 2022. Expression analysis of molecular chaperones Hsp70 and Hsp90 on development and metabolism of different organs and testis in cattle (cattle-yak and yak). Metabolites 12:1114

doi: 10.3390/metabo12111114
[56]

Wu Y, Pei Y, Qin Y. 2011. Developmental expression of heat shock proteins 60, 70, 90, and A2 in rabbit testis. Cell and Tissue Research 344:355−63

doi: 10.1007/s00441-011-1151-4
[57]

Kamitani T, Kito K, Nguyen HP, Yeh ET. 1997. Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. The Journal of Biological Chemistry 272:28557−62

doi: 10.1074/jbc.272.45.28557
[58]

Hori T, Osaka F, Chiba T, Miyamoto C, Okabayashi K, et al. 1999. Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene 18:6829−34

doi: 10.1038/sj.onc.1203093
[59]

Schwechheimer C. 2018. NEDD8-its role in the regulation of Cullin-RING ligases. Current Opinion in Plant Biology 45:112−19

doi: 10.1016/j.pbi.2018.05.017
[60]

Saganová K, Gálik J, Blaško J, Korimová A, Račeková E, et al. 2012. Immunosuppressant FK506: focusing on neuroprotective effects following brain and spinal cord injury. Life Sciences 91:77−82

doi: 10.1016/j.lfs.2012.06.022
[61]

Fry MY, Saladi SM, Clemons WM Jr. 2021. The STI1-domain is a flexible alpha-helical fold with a hydrophobic groove. Protein Science: A Publication of the Protein Society 30:882−98

doi: 10.1002/pro.4049
[62]

Letunic I, Bork P. 2018. 20 years of the SMART protein domain annotation resource. Nucleic Acids Research 46:D493−D496

doi: 10.1093/nar/gkx922
[63]

Clark MS, Peck LS. 2009. Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna). Cell Stress & Chaperones 14:649−60

doi: 10.1007/s12192-009-0117-x
[64]

Park H, Ahn IY, Lee HE. 2007. Expression of heat shock protein 70 in the thermally stressed antarctic clam Laternula elliptica. Cell Stress & Chaperones 12:275−82

doi: 10.1379/csc-271.1
[65]

Li J, Zhang Y, Liu Y, Zhang Y, Xiao S, et al. 2016. Co-expression of heat shock protein (HSP) 40 and HSP70 in Pinctada martensii response to thermal, low salinity and bacterial challenges. Fish & Shellfish Immunology 48:239−43

doi: 10.1016/j.fsi.2015.11.038
[66]

Li G, Xu K, Yang W, Luo J, HUANG, DU X. 2019. cDNA cloning of heat shock protein Hsp90 gene in Andrias davidianus and its expression exposed to extreme temperature stress. Jiangsu Agricultural Sciences 47(24):34−39

doi: 10.15889/j.issn.1002-1302.2019.24.008
[67]

Staikou A, Sagonas K, Spanoudi O, Savvidou K, Nazli Z, et al. 2024. Activities of antioxidant enzymes and Hsp levels in response to elevated temperature in land snail species with varied latitudinal distribution. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 269:110908

doi: 10.1016/j.cbpb.2023.110908