| [1] |
Lopez MJ, Mohiuddin, SS. 2023. Biochemistry, Essential Amino Acids. St. Petersburg, Florida: StatPearls Publishing. www.ncbi.nlm.nih.gov/books/NBK557845 |
| [2] |
Massey KA, Blakeslee CH, Pitkow HS. 1998. A review of physiological and metabolic effects of essential amino acids. Amino Acids 14:271−300 doi: 10.1007/BF01318848 |
| [3] |
Elango R. 2023. Tolerable upper intake level for individual amino acids in humans: a narrative review of recent clinical studies. Advances in Nutrition 14(4):885−94 doi: 10.1016/j.advnut.2023.04.004 |
| [4] |
Patience JF. 1990. A review of the role of acid-base balance in amino acid nutrition. Journal of Animal Science 68(2):398−408 doi: 10.2527/1990.682398x |
| [5] |
Ji Y, Hou Y, Blachier F, Wu Z. 2023. Editorial: Amino acids in intestinal growth and health. Frontiers in Nutrition 10:1172548 doi: 10.3389/fnut.2023.1172548 |
| [6] |
Yandri Y, Ropingi H, Suhartati T, Irawan B, Hadi S. 2023. Immobilization of Aspergillus fumigatus α-amylase via adsorption onto bentonite/chitosan for stability enhancement. Emerging Science Journal 7(5):1811−25 doi: 10.28991/ESJ-2023-07-05-023 |
| [7] |
Szwiega S, Pencharz PB, Ball RO, Tomlinson C, Elango R, et al. 2023. Amino acid oxidation methods to determine amino acid requirements: do we require lengthy adaptation periods? British Journal of Nutrition 129(11):1848−54 doi: 10.1017/s0007114522002720 |
| [8] |
Srivastava A, Srivastava N, Singh R, Srivastava K. 2023. Cu(II) promoted oxidation of L-valine by hexacyanoferrate(III) in cationic micellar medium. Journal of the Indian Chemical Society 100(8):101058 doi: 10.1016/j.jics.2023.101058 |
| [9] |
Lan NTH, Hieu TD, Chinh NT, Le Anh NT, Nhi PTY, et al. 2023. HO● - initiated oxidation of isoleucine amino acid in the aqueous phase. Vietnam Journal of Chemistry 61:37−44 doi: 10.1002/vjch.202200210 |
| [10] |
Srivastava A, Goswami MK, Dohare RK, Srivastava N, Srivastava K. 2023. Effect of cationic surfactant on Ru(III) catalyzed L-glutamic acid oxidation by hexacyanoferrate(III). International Journal of Chemical Kinetics 55:431−40 doi: 10.1002/kin.21646 |
| [11] |
Du P, Liu W, Cao H, Zhao H, Huang CH. 2018. Oxidation of amino acids by peracetic acid: reaction kinetics, pathways and theoretical calculations. Water Research X 1:100002 doi: 10.1016/j.wroa.2018.09.002 |
| [12] |
Tunsagool P, Kruaweangmol P, Sunpapao A, Kuyyogsuy A, Jaresitthikunchai J, et al. 2023. Global metabolic changes by bacillus cyclic lipopeptide extracts on stress responses of para rubber leaf. Emerging Science Journal 7(3):974−90 doi: 10.28991/esj-2023-07-03-022 |
| [13] |
Srivastava A, Manjusha, Srivastava N, Naik RM. 2023. Kinetic Study of Ru(III) Promoted Oxidation of L-Tryptophan in an Anionic Surfactant Medium by Hexacyanoferrate(III). Journal of the Mexican Chemical Society 67(1):46−59 doi: 10.29356/jmcs.v67i1.1829 |
| [14] |
Chowdhury S, Rakshit A, Acharjee A, Ghosh A, Mahali K, et al. 2019. Ru(III) catalysed oxidation of 2-propanol by Cr(VI) in micellar media. Journal of Molecular Liquids 290:111247 doi: 10.1016/j.molliq.2019.111247 |
| [15] |
Srivastava A, Srivastava N, Srivastava K. 2023. Kinetic and mechanistic investigation of Os(VIII) - catalyzed L-tryptophan oxidation by Hexacyanoferrate(III) in CTAB micellar medium. Russian Journal of Physical Chemistry A 97(13):2932−2941 doi: 10.1134/S0036024423130022 |
| [16] |
Srivastava A, Srivastava N, Singh R. 2024. Oxidative decolorization of Mordant Black 17 by peroxydisulfate facilitated by Fe2+. Indian Journal of Chemistry 63:325−31 doi: 10.56042/ijc.v63i3.6996 |
| [17] |
Srivastava A, Singh R, Srivastava N, Naik RM. 2023. Kinetic study of Ru(III) - catalyzed oxidation of L-phenylalanine by hexacyanoferrate(III) in an anionic surfactant medium. Tenside Surfactants Detergents 60(4):376−86 doi: 10.1515/tsd-2022-2477 |
| [18] |
Konnur SB, Nandibewoor ST. 2020. Autocatalyzed oxidation of amino acid, L-Citrulline by diperiodatocuprate(III) complex in aqueous alkaline medium: a kinetics and mechanistic approach. Journal of Chemical Sciences 132:17 doi: 10.1007/s12039-019-1718-2 |
| [19] |
Bagoji AM, Magdum PA, Nandibewoor ST. 2016. Oxidation of acebutolol by Copper(III) periodate complex in aqueous alkaline medium: a kinetic and mechanistic approach. Journal of Solution Chemistry 45:1715−28 doi: 10.1007/s10953-016-0539-x |
| [20] |
Gowda JI, Nayak SS, Langote SR, Joshi PS, Nandibewoor ST, et al. 2015. Spectroscopic and mechanistic investigations into oxidation of aspartame by diperiodatocuprate(III) in aqueous alkaline medium. Cogent Chemistry 1(1):1015909 doi: 10.1080/23312009.2015.1015909 |
| [21] |
Magdum PA, Bagoji AM, Nandibewoor ST. 2015. Ruthenium(III) catalysed and uncatalysed oxidative mechanisms of methylxanthine drug theophylline by copper(III) periodate complex in alkali media: a comparative approach. Journal of Physical Organic Chemistry 28:743−54 doi: 10.1002/poc.3478 |
| [22] |
Naik KM, Nandibewoor ST. 2011. Mechanistic aspects of uncatalyzed and ruthenium(iii) catalyzed oxidation of 1,4-dioxane by a copper(iii) periodate complex in aqueous alkaline medium. Catalysis Science and Technology 1:1232−42 doi: 10.1039/c1cy00192b |
| [23] |
Hu Y, Li G, Zhang Z. 2011. A flow injection chemiluminescence method for the determination of lincomycin in serum using a diperiodato-cuprate(III)–luminol system. Luminescence 26(5):313−18 doi: 10.1002/bio.1230 |
| [24] |
Linder MC, Hazegh-Azam M. 1996. Copper biochemistry and molecular biology. The American Journal of Clinical Nutrition 63(5):797S−811S doi: 10.1093/ajcn/63.5.797 |
| [25] |
Gunagi SD, Nandibewoor ST, Chimatadar SA. 2012. Oxidation of acyclovir by a Cuprate(III) periodate complex in aqueous alkaline media: a kinetic and mechanistic approach. Journal of Solution Chemistry 41:777−92 doi: 10.1007/s10953-011-9744-9 |
| [26] |
Sharanabasamma K, Salunke MS, Tuwar SM. 2008. Periodate influencing Diperiodatocuprate(III) oxidation of sulfur containing amino acid in aqueous alkaline medium. Journal of Solution Chemistry 37:1217−25 doi: 10.1007/s10953-008-9307-x |
| [27] |
Chowdhury B, Ghosh A, Rahaman SM, Saha B. 2023. Cooperative rate amplification by binary surfactant (CPC/TX-100) nano-aggregates on the diperiodatocuprate(III) (DPC) oxidation of 2-butanol in aqueous medium. Research on Chemical Intermediates 49:4041−63 doi: 10.1007/s11164-023-05069-5 |
| [28] |
Chowdhury B, Mondal MH, Barman MK, Saha B. 2019. A study on the synthesis of alkaline copper(III)-periodate (DPC) complex with an overview of its redox behavior in aqueous micellar media. Research on Chemical Intermediates 45:789−800 doi: 10.1007/s11164-018-3643-2 |
| [29] |
Chowdhury B, Rahaman SM, Ghosh A, Mahali K, Sar P, et al. 2022. Synergistic reinforcement of CPC/TX-100 mixed micellar microenvironment for diperiodatocuprate(III) (DPC) oxidation of 1-propanol and 1,3-propanediol. Journal of Molecular Liquids 368:120817 doi: 10.1016/j.molliq.2022.120817 |
| [30] |
Chowdhury B, Sar P, Kumar D, Saha B. 2022. Advancement of Cu(III) and Fe(III) directed oxidative transformations: Recent impact of aqueous micellar environment. Journal of Molecular Liquids 347:117993 doi: 10.1016/j.molliq.2021.117993 |
| [31] |
Sar P, Saha B. 2020. Potential application of Micellar nanoreactor for electron transfer reactions mediated by a variety of oxidants: A review. Advances in Colloid and Interface Science 284:102241 doi: 10.1016/j.cis.2020.102241 |
| [32] |
Srivastava A, Srivastava N, Dohare RK, Srivastava K, Singh R. 2024. Effect of CTAB micellar medium on Cu(II) catalyzed L-leucine oxidation by Hexacyanoferrate(III). Doklady Physical Chemistry 514:15−23 doi: 10.1134/S0012501623600201 |
| [33] |
Srivastava A, Srivastava N, Tiwari D, Nayak R, Naik RM. 2024. Role of surfactants on Fe2+ mediated oxidative decolorization of Acid Red 13 by peroxydisulfate. Journal of Dispersion Science and Technology Latest Artcle doi: 10.1080/01932691.2024.2348495 |
| [34] |
Tegginamath V, Hiremath CV, Nandibewoor ST. 2007. Kinetics and mechanism of uncatalysed and ruthenium(III) catalysed oxidation of allyl alcohol by diperiodatoargentate(III) in aqueous alkaline medium. Journal of Physical Organic Chemistry 20:55−64 doi: 10.1002/poc.1126 |
| [35] |
Shetti NP, Malode SJ, Nandibewoor ST. 2011. Oxidation of 6-aminopenicillanic acid by an alkaline copper(III) periodate complex in the absence and presence of ruthenium(III) as a homogeneous catalyst. Polyhedron 30(11):1785−98 doi: 10.1016/j.poly.2011.04.025 |
| [36] |
Lipshutz BH. 2024. On the role of surfactants: rethinking "aqueous" chemistry. Green Chemistry 26:739−52 doi: 10.1039/D3GC03875K |
| [37] |
Omari A, Cao R, Zhu Z, Xu X. 2021. A comprehensive review of recent advances on surfactant architectures and their applications for unconventional reservoirs. Journal of Petroleum Science and Engineering 206:109025 doi: 10.1016/j.petrol.2021.109025 |
| [38] |
Perinelli DR, Cespi M, Lorusso N, Palmieri GF, Bonacucina G, et al. 2020. Surfactant self-assembling and critical micelle concentration: one approach fits all? Langmuir 36(21):5745−53 doi: 10.1021/acs.langmuir.0c00420 |
| [39] |
Belhaj AF, Elraies KA, Mahmood SM, Zulkifli NN, Akbari S, et al. 2020. The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review. Journal of Petroleum Exploration and Production Technology 10:125−37 doi: 10.1007/s13202-019-0685-y |
| [40] |
Cortes-Clerget M, Kincaid JRA, Akporji N, Lipshutz BH. 2022. Surfactant Assemblies as Nanoreactors for Organic Transformations. In Supramolecular Catalysis, eds van Leeuwen PWN, Raynal M. Weinheim, Germany: Wiley-VCH. pp. 467−87. doi: 10.1002/9783527832033.ch32 |
| [41] |
Sheldon RA. 2019. The greening of solvents: Towards sustainable organic synthesis. Current Opinion in Green and Sustainable Chemistry 18:13−19 doi: 10.1016/j.cogsc.2018.11.006 |
| [42] |
Sar P, Ghosh A, Scarso A, Saha B. 2019. Surfactant for better tomorrow: applied aspect of surfactant aggregates from laboratory to industry. Research on Chemical Intermediates 45:6021−41 doi: 10.1007/s11164-019-04017-6 |
| [43] |
Romney DK, Arnold FH, Lipshutz BH, Li CJ. 2018. Chemistry Takes a Bath: Reactions in Aqueous Media. The Journal of Organic Chemistry 83(14):7319−22 doi: 10.1021/acs.joc.8b01412 |
| [44] |
Malik S, Ghosh A, Sar P, Mondal MH, Mahali K, et al. 2017. Employment of different spectroscopic tools for the investigation of chromium(VI) oxidation of acetaldehyde in aqueous micellar medium. Journal of Chemical Sciences 129:637−45 doi: 10.1007/s12039-017-1276-4 |
| [45] |
Hoque MA, Mahbub S, Rub MA, Rana S, Khan MA. 2018. Experimental and theoretical investigation of micellization behavior of sodium dodecyl sulfate with cetyltrimethylammonium bromide in aqueous/urea solution at various temperatures. Korean Journal of Chemical Engineering 35:2269−82 doi: 10.1007/s11814-018-0120-y |
| [46] |
Mahbub S, Rub MA, Hoque MA, Khan MA, Kumar D. 2019. Micellization behavior of cationic and anionic surfactant mixtures at different temperatures: Effect of sodium carbonate and sodium phosphate salts. Journal of Physical Organic Chemistry 32:e3967 doi: 10.1002/poc.3967 |
| [47] |
Reddy CS, Kumar VT. 1995. Kinetic and mechanistic study of Ruthenium(III) catalysed and uncatalysed oxidation of oxalic acid by acid bromate. Indian Journal of Chemistry 34(A):615−20 |
| [48] |
Murthy CP, Sethuram B, Rao T. 1981. Kinetics of oxidation of some alcohols by diperiodatocuprate(III) in alkaline medium. Zeitschrift Für Physikalische Chemie 2620(1):336−40 doi: 10.1515/zpch-1981-26245 |
| [49] |
Jeffery GH, Bassett J, Mendham J, Denny RC. 1996. Vogel's Textbook of Quantitative Chemical Analysis. 5th Edition. Essex, UK: ELBS, Longman. pp. 455 |
| [50] |
Panigrahi GP, Misro PK. 1978. Kinetics and mechanism of oxidation of aliphatic ketones by sodium metaperiodate: a comparative study of uncatalysed versus osmium tetraoxide- catalysed oxidation. Indian Journal of Chemistry 16(A):762−66 |
| [51] |
Reddy KB, Sethuram B, Navneeth RT. 1987. Oxidation of 1,2 ethane diol, 1,2-propanediol and 1,2-butane diol by Diperiodatocuprate(III) in aqueous alkaline medium: a kinetic study. Zeitschrift für Physikalische Chemie 268(1):706−10 doi: 10.1515/zpch-1987-26890 |
| [52] |
Bailar JC, Jr Emelens HJ, Nyholm SR, Trotman-Dikenson AF. 1975. Comprehensive inorganic chemistry. vol. 2. Oxford: Pergamon Press. pp. 1456 |
| [53] |
Lister MW. 1953. The stability of some complexes of trivalent copper. Canadian Journal of Chemistry 31:638−52 doi: 10.1139/v53-087 |
| [54] |
Cotton FA, Wilkinson G, Murillo CA, Bochmann M. 1999. Advanced inorganic chemistry. 6th Editon. New York: John Wiley & Sons Inc. |
| [55] |
Rastogi R, Srivastava A, Naik RM. 2020. Kinetic and mechanistic analysis of ligand substitution of aquapentacyanoruthenate(II) in SDS medium by 4,4′bipyridine. Journal of Dispersion Science and Technology 41(7):1045−50 doi: 10.1080/01932691.2019.1614042 |
| [56] |
Graciani MM, Rodríguez MA, Moyá ML. 1997. Study of the ligand substitution reaction Fe (CN)5H2O3− + pyrazine in micellar solutions. International Journal of Chemical Kinetics 29(5):377−84 doi: 10.1002/(SICI)1097-4601(1997)29:5<377::AID-KIN8>3.0.CO;2-R |
| [57] |
Bunton CA, Nome F, Quina FH, Romsted LS. 1991. Ion binding and reactivity at charged aqueous interfaces. Accounts of Chemical Research Journal 24(12):357−64 doi: 10.1021/ar00012a001 |
| [58] |
López-Cornejo P, Mozo JD, Roldán E, Domı́nguez M, Sánchez F. 2002. Kinetic study of the reaction * [Ru(bpy)3]2+ + S2O82− in solutions of Brij-35 at premicellar and micellar concentrations. Chemical Physics Letters 352(1):33−38 doi: 10.1016/S0009-2614(01)01287-8 |
| [59] |
Piszkiewicz D. 1977. Cooperativity in bimolecular micelle-catalysed reactions. Inhibition of catalysis by high concentrations of detergent. Journal of American Chemical Society 99(23):7695−97 doi: 10.1021/ja00465a046 |
| [60] |
Sen PK, Gani N, Pal B. 2013. Effects of microheterogeneous environments of SDS, TX-100, and Tween 20 on the electron transfer reaction between ʟ-leucine and AuCl4−/AuCl3(OH)−. Industrial & Engineering Chemistry Research 52(8):2803−2813 doi: 10.1021/ie302656d |
| [61] |
Acharjee A, Rakshit A, Chowdhury S, Malik S, Barman MK, et al. 2019. Micellar catalysed and heteroaromatic base promoted rate enhancement of oxidation of an alicyclic alcohol in aqueous medium. Journal of Molecular Liquids 277(1):360−71 doi: 10.1016/j.molliq.2018.12.082 |