| [1] |
Yang J, Wang Y, Shi X, Liu Y, Ge S, et al. 2024. Prevalence of sarcopenic obesity among older adults in communities of China: a multicenter, cross-sectional study. Nutrition in Clinical Practice 39:1375−87 doi: 10.1002/ncp.11214 |
| [2] |
Cani PD, Van Hul M. 2024. Gut microbiota in overweight and obesity: crosstalk with adipose tissue. Nature Reviews Gastroenterology & Hepatology 21:164−83 doi: 10.1038/s41575-023-00867-z |
| [3] |
Pan MH, Tung YC, Yang G, Li S, Ho CT. 2016. Molecular mechanisms of the anti-obesity effect of bioactive compounds in tea and coffee. Food & Function 7:4481−91 doi: 10.1039/C6FO01168C |
| [4] |
Ma MM, Xu YY, Sun LH, Cui WJ, Fan M, et al. 2024. Statin-associated liver dysfunction and muscle injury: epidemiology, mechanisms, and management strategies. International Journal of General Medicine 17:2055−63 doi: 10.2147/IJGM.S460305 |
| [5] |
Averbukh LD, Turshudzhyan A, Wu DC, Wu GY. 2022. Statin-induced liver injury patterns: a clinical review. Journal of Clinical and Translational Hepatology 10:543−52 doi: 10.14218/JCTH.2021.00271 |
| [6] |
Eichelmann F, Prada M, Sellem L, Jackson KG, Salas Salvadó J, et al. 2024. Lipidome changes due to improved dietary fat quality inform cardiometabolic risk reduction and precision nutrition. Nature Medicine 30:2867−77 doi: 10.1038/s41591-024-03124-1 |
| [7] |
Coia H, Ma N, Hou Y, Permaul E, Berry DL, et al. 2021. Theaphenon E prevents fatty liver disease and increases CD4+ T cell survival in mice fed a high-fat diet. Clinical Nutrition 40:110−19 doi: 10.1016/j.clnu.2020.04.033 |
| [8] |
Čolak E, Pap D. 2021. The role of oxidative stress in the development of obesity and obesity-related metabolic disorders. Journal of Medical Biochemistry 40:1−9 doi: 10.5937/jomb0-24652 |
| [9] |
Cao SY, Zhao CN, Xu XY, Tang GY, Corke H, et al. 2019. Dietary plants, gut microbiota, and obesity: effects and mechanisms. Trends in Food Science & Technology 92:194−204 doi: 10.1016/j.jpgs.2019.08.004 |
| [10] |
Palmas V, Pisanu S, Madau V, Casula E, Deledda A, et al. 2021. Gut microbiota markers associated with obesity and overweight in Italian adults. Scientific Reports 11:5532 doi: 10.1038/s41598-021-84928-w |
| [11] |
Amabebe E, Robert FO, Agbalalah T, Orubu ESF. 2020. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. British Journal of Nutrition 123:1127−37 doi: 10.1017/S0007114520000380 |
| [12] |
Yang CY, Hung KC, Yen YY, Liao HE, Lan SJ, et al. 2022. Anti-oxidative effect of Pu-erh tea in animals trails: a systematic review and meta-analysis. Foods 11:1333 doi: 10.3390/foods11091333 |
| [13] |
Wang S, Qiu Y, Gan RY, Zhu F. 2022. Chemical constituents and biological properties of Pu-erh tea. Food Research International 154:110899 doi: 10.1016/j.foodres.2021.110899 |
| [14] |
Zhao L, Miao Y, Shan B, Zhao C, Peng C, et al. 2023. Theabrownin isolated from Pu-Erh tea enhances the innate immune and anti-inflammatory effects of RAW264.7 macrophages via the TLR2/4-mediated signaling pathway. Foods 12:1468 doi: 10.3390/foods12071468 |
| [15] |
Liu Y, Luo Y, Wang X, Luo L, Sun K, et al. 2020. Gut microbiome and metabolome response of Pu-erh tea on metabolism disorder induced by chronic alcohol consumption. Journal of Agricultural and Food Chemistry 68:6615−27 doi: 10.1021/acs.jafc.0c01947 |
| [16] |
Shan B, Zhao C, Peng C, Miao Y, Lei S, et al. 2025. Theabrownin from Pu-erh tea attenuated high-fat diet-induced metabolic syndrome in rat by regulating microRNA and affecting gut microbiota. International Journal of Biological Macromolecules 285:138368 doi: 10.1016/j.ijbiomac.2024.138368 |
| [17] |
Wang N, Lan C, Mehmood MA, He M, Xiao X, et al. 2023. Effects of Pu-erh and Dian Hong tea polyphenols on the gut-liver axis in mice. AMB Express 13:53 doi: 10.1186/s13568-023-01565-4 |
| [18] |
Cai X, Hayashi S, Fang C, Hao S, Wang X, et al. 2017. Pu'erh tea extract-mediated protection against hepatosteatosis and insulin resistance in mice with diet-induced obesity is associated with the induction of de novo lipogenesis in visceral adipose tissue. Journal of Gastroenterology 52:1240−51 doi: 10.1007/s00535-017-1332-3 |
| [19] |
Lu X, Liu J, Zhang N, Fu Y, Zhang Z, et al. 2019. Ripened Pu-erh tea extract protects mice from obesity by modulating gut microbiota composition. Journal of Agricultural and Food Chemistry 67:6978−94 doi: 10.1021/acs.jafc.8b04909 |
| [20] |
Huang F, Zheng X, Ma X, Jiang R, Zhou W, et al. 2019. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nature Communications 10:4971 doi: 10.1038/s41467-019-12896-x |
| [21] |
Zhao C, Zhao L, Li Z, Miao Y, Lei S, et al. 2024. Theabrownin ameliorated lipid accumulation via modulating circadian rhythms in oleic acid-induced HepG2 cells. Journal of Functional Foods 116:106185 doi: 10.1016/j.jff.2024.106185 |
| [22] |
Hu S, Hu C, Luo L, Zhang H, Zhao S, et al. 2022. Pu-erh tea increases the metabolite Cinnabarinic acid to improve circadian rhythm disorder-induced obesity. Food Chemistry 394:133500 doi: 10.1016/j.foodchem.2022.133500 |
| [23] |
Huang F, Wang S, Zhao A, Zheng X, Zhang Y, et al. 2019. Pu-erh tea regulates fatty acid metabolism in mice under high-fat diet. Frontiers in Pharmacology 10:63 doi: 10.3389/fphar.2019.00063 |
| [24] |
Liu J, Ding H, Yan C, He Z, Zhu H, et al. 2023. Effect of tea catechins on gut microbiota in high fat diet-induced obese mice. Journal of the Science of Food and Agriculture 103:2436−45 doi: 10.1002/jsfa.12476 |
| [25] |
Wang Y, Xia H, Yu J, Sui J, Pan D, et al. 2023. Effects of green tea catechin on the blood pressure and lipids in overweight and obese population-a meta-analysis. Heliyon 9:e21228 doi: 10.1016/j.heliyon.2023.e21228 |
| [26] |
He J, Chen J, He Q, Li S, Jian L, et al. 2021. Oral L-theanine administration promotes fat browning and prevents obesity in mice fed high-fat diet associated with the modulation of gut microbiota. Journal of Functional Foods 81:104476 doi: 10.1016/j.jff.2021.104476 |
| [27] |
Yuan Y, He J, Tang M, Chen H, Wei T, et al. 2023. Preventive effect of Ya'an Tibetan tea on obesity in rats fed with a hypercaloric high-fat diet revealed by gut microbiology and metabolomics studies. Food Research International 165:112520 doi: 10.1016/j.foodres.2023.112520 |
| [28] |
Ardissino M, Vincent M, Hines O, Amin R, Eichhorn C, et al. 2022. Long-term cardiovascular outcomes after orlistat therapy in patients with obesity: a nationwide, propensity-score matched cohort study. European Heart Journal - Cardiovascular Pharmacotherapy 8:179−86 doi: 10.1093/ehjcvp/pvaa133 |
| [29] |
Cai Z, Zhong Q, Feng Y, Wang Q, Zhang Z, et al. 2024. Non-invasive mapping of brown adipose tissue activity with magnetic resonance imaging. Nature Metabolism 6:1367−79 doi: 10.1038/s42255-024-01082-z |
| [30] |
Nie HY, Ge J, Huang GX, Liu KG, Yue Y, et al. 2024. New insights into the intestinal barrier through "gut-organ" axes and a glimpse of the microgravity's effects on intestinal barrier. Frontiers in Physiology 15:1465649 doi: 10.3389/fphys.2024.1465649 |
| [31] |
Lee Y, Lee HY. 2020. Revisiting the bacterial phylum composition in metabolic diseases focused on host energy metabolism. Diabetes & Metabolism Journal 44:658−67 doi: 10.4093/dmj.2019.0220 |
| [32] |
Cani PD, Depommier C, Derrien M, Everard A, de Vos WM. 2022. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nature Reviews Gastroenterology & Hepatology 19:625−37 doi: 10.1038/s41575-022-00631-9 |