[1]

Lavelli V, Sereikaitė J. 2022. Kinetic study of encapsulated β-carotene degradation in aqueous environments: a review. Foods 11:317

doi: 10.3390/foods11030317
[2]

Haskell MJ. 2012. The challenge to reach nutritional adequacy for vitamin A: β-carotene bioavailability and conversion—evidence in humans. The American Journal of Clinical Nutrition 96:1193S−1203S

doi: 10.3945/ajcn.112.034850
[3]

Tang G, Qin J, Dolnikowski GG, Russell RM, Grusak MA. 2009. Golden Rice is an effective source of vitamin A. American Journal of Clinical Nutrition 89:1776−83

doi: 10.3945/ajcn.2008.27119
[4]

Maurya VK, Shakya A, Bashir K, Kushwaha SC, McClements DJ. 2022. Vitamin A fortification: Recent advances in encapsulation technologies. Comprehensive Reviews in Food Science and Food Safety 21:2772−819

doi: 10.1111/1541-4337.12941
[5]

Hickenbottom SJ, Follett JR, Lin Y, Dueker SR, Burri BJ, et al. 2002. Variability in conversion of β-carotene to vitamin A in men as measured by using a double-tracer study design. American Journal of Clinical Nutrition 75:900−07

doi: 10.1093/ajcn/75.5.900
[6]

Liu L, Fan L. 2003. Natural beta-carotene microcapsule and method for making same. CN Patent No. 100423652C

[7]

Patel AS, Kar A, Dash S, Dash SK. 2019. Supercritical fluid extraction of beta-carotene from ripe bitter melon pericarp. Scientific Reports 9:19266

doi: 10.1038/s41598-019-55481-4
[8]

Mattea F, Martín Á, Cocero MJ. 2009. Carotenoid processing with supercritical fluids. Journal of Food Engineering 93:255−65

doi: 10.1016/j.jfoodeng.2009.01.030
[9]

Moreira JB, Goularte PG, de Morais MG, Costa JAV. 2019. Preparation of beta-carotene nanoemulsion and evaluation of stability at a long storage period. Food Science and Technology 39:599−604

doi: 10.1590/fst.31317
[10]

FDA. 1987. Title 21 Code of Federal Regulations Subchapter B Food for Human Consumption Part 184 Direct Food Substances Affirmed as Generally Regarded as Safe. ed. DoHaH Services

[11]

Schlipalius LE. 1995. High cis beta carotene composition. Austria Patent No. 0643692B1

[12]

Ben-Amotz A, Yatziv S, Sela M, Greenberg S, Rachmilevich B, et al. 1998. Effect of natural β-carotene supplementation in children exposed to radiation from the Chernobyl accident. Radiation and Environmental Biophysics 37:187−93

doi: 10.1007/s004110050116
[13]

Wang Z, Li X, Yu C, Lu M, Zhou X, et al. 2014. Microcapsules and fatty powder containing beta carotene. CN Patent No. 105925653B

[14]

Szabo K, Emőke Teleky B, Ranga F, Simon E, Lelia Pop O, et al. 2021. Bioaccessibility of microencapsulated carotenoids, recovered from tomato processing industrial by-products, using in vitro digestion model. LWT-Food Science and Technology 152:112285

doi: 10.1016/j.lwt.2021.112285
[15]

Liu T, Li X, Ma T, Xiao E, Ye Z, et al. 2015. A kind of yeast strain producing beta carotene and its application. CN Patent No. 105087408B

[16]

Kyriakopoulou K, Papadaki S, Krokida M. 2015. Life cycle analysis of β-carotene extraction techniques. Journal of Food Engineering 167:51−58

doi: 10.1016/j.jfoodeng.2015.03.008
[17]

Wang H, Hu L, Peng L, Du J, Lan M, et al. 2022. Dual encapsulation of β-carotene by β-cyclodextrin and chitosan for 3D printing application. Food Chemistry 378:132088

doi: 10.1016/j.foodchem.2022.132088
[18]

Feng L, Wu J, Cai L, Li M, Dai Z, et al. 2022. Effects of different hydrocolloids on the water migration, rheological and 3D printing characteristics of β-carotene loaded yam starch-based hydrogel. Food Chemistry 393:133422

doi: 10.1016/j.foodchem.2022.133422
[19]

Maurya VK, Shakya A, Bashir K, Jan K, McClements DJ. 2023. Fortification by design: a rational approach to designing vitamin D delivery systems for foods and beverages. Comprehensive Reviews in Food Science and Food Safety 22:135−86

doi: 10.1111/1541-4337.13066
[20]

Cox DJ, Kearney DR, Kirksey STJ, Taylor MJ. 1999. Oil-in-water dispersions of β-carotene and other carotenoids stable against oxidation prepared from water-dispersible beadlets having high concentrations of carotenoid. US Patent No. 006007856A

[21]

Lang JC. 2000. Stable carotene-xanthophyll beadlet compositions and methods of use. Australia Patent No. 780168

[22]

Li W, Alosio E, Rutolo DJA, Dema-Ala BF. 2005. Clear micellized formulations of β-carotene and method of treating leukoplakia. US Patent No. 6890961B2

[23]

Runge F, Holm-Hansen J, Michelsen B. 2006. Carotenoid formulations, comprising a mixture of β-carotene, lycopene and lutein. US Patent No. 7056525B2

[24]

Dong Y, Jie E. 2007. Beta-carotene microcapsule and preparing method thereof. CN Patent No. 101292965B

[25]

Yeum K-J. 2007. Synergistic effect of compositions comprisinng carotenoids selected from lutein, beta-carotene and lycopene. US Patent No. 2007/0082044A1

[26]

Lockwood SF, O'Malley S, Watumull DG, Hix LM, Jackson H, Nadolski G. 2008. Pharmaceutical compositions including carotenoid ether analogs or derivatices for the inhibition and amelioration of disease. US Patent No. 7375133B2

[27]

Xiong W, Z. D, Shen G, Mo H, Hou Y, et al. 2010. Beta-carotene-containing infant milk powder and preparation method thereof. CN Patent No. 101816330B

[28]

Köpsel C, Sambale C, Hasse A. 2010. Stable, ready-to-use suspension of partially amorphous beta-carotene particles. Spain Patent No. 2621184T3

[29]

Liu B, Chen J. 2014. A kind of production method of beta carotene microcapsules. CN Patent No. 103976353B

[30]

He T, Guan R, Shen Y. 2015. A kind of preparation technology of beta-carotene microcapsules. CN Patent No. 104719894B

[31]

Cheng X, He J, Zeng Y. 2016. A kind of microcapsules beta carotene powder and preparation method thereof. CN Patent No. 105747216B

[32]

Cheng X, He Y, Zeng Y. 2017. A kind of natural beta-carotene microscapsule powder and preparation method thereof. CN Patent No. 107048367A

[33]

Xu X, Zeng J. 2021. Process for microencapsulation of beta-carotene. CN Patent No. 112890192A

[34]

Đorđević V, Balanč B, Belščak-Cvitanović A, Lević S, Trifković K, et al. 2014. Trends in encapsulation technologies for delivery of food bioactive compounds. Food Engineering Reviews 7:452−90

doi: 10.1007/s12393-014-9106-7
[35]

Desobry SA, Netto FM, Labuza TP. 1997. Comparison of spray-drying, drum-drying and freeze drying for β-carotene encapsulation and preservation. Journal of Food Science 62:1158−62

doi: 10.1111/j.1365-2621.1997.tb12235.x
[36]

Loksuwan J. 2007. Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloids 21:928−35

doi: 10.1016/j.foodhyd.2006.10.011
[37]

Donhowe EG, Flores FP, Kerr WL, Wicker L, Kong F. 2014. Characterization and in vitro bioavailability of β-carotene: Effects of microencapsulation method and food matrix. LWT - Food Science and Technology 57:42−48

doi: 10.1016/j.lwt.2013.12.037
[38]

Magnaye MJFA, Mopera LE, Flores FP. 2022. Effect of rice bran protein concentrate as wall material adjunct on selected physicochemical and release properties of microencapsulated β-carotene. Food Science and Technology International 28:653−62

doi: 10.1177/10820132211049609
[39]

Mao L, Wang D, Liu F, Gao Y. 2018. Emulsion design for the delivery of beta-carotene in complex food systems. Critical Reviews in Food Science and Nutrition 58:770−84

doi: 10.1080/10408398.2016.1223599
[40]

Trentin A, De Lamo S, Güell C, López F, Ferrando M. 2011. Protein-stabilized emulsions containing β-carotene produced by premix membrane emulsification. Journal of Food Engineering 106:267−74

doi: 10.1016/j.jfoodeng.2011.03.013
[41]

Gomes GVL, Sola MR, Rochetti AL, Fukumasu H, Vicente AA, et al. 2019. β-carotene and α-tocopherol coencapsulated in nanostructured lipid carriers of murumuru (Astrocaryum murumuru) butter produced by phase inversion temperature method: characterisation, dynamic in vitro digestion and cell viability study. Journal of Microencapsulation 36:43−52

doi: 10.1080/02652048.2019.1585982
[42]

Liang R, Huang Q, Ma J, Shoemaker CF, Zhong F. 2013. Effect of relative humidity on the store stability of spray-dried beta-carotene nanoemulsions. Food Hydrocolloids 33:225−33

doi: 10.1016/j.foodhyd.2013.03.015
[43]

Mun S, Kim YR, McClements DJ. 2015. Control of β-carotene bioaccessibility using starch-based filled hydrogels. Food Chemistry 173:454−61

doi: 10.1016/j.foodchem.2014.10.053
[44]

Wu Z, Gao R, Zhou G, Huang Y, Zhao X, et al. 2021. Effect of temperature and pH on the encapsulation and release of β-carotene from octenylsuccinated oat β-glucan micelles. Carbohydrate Polymers 255:117368

doi: 10.1016/j.carbpol.2020.117368
[45]

Lim ASL, Burdikova Z, Sheehan JJ, Roos YH. 2016. Carotenoid stability in high total solid spray dried emulsions with gum Arabic layered interface and trehalose – WPI composites as wall materials. Innovative Food Science & Emerging Technologies 34:310−19

doi: 10.1016/j.ifset.2016.03.001
[46]

Lin Q, Liang R, Williams PA, Zhong F. 2018. Factors affecting the bioaccessibility of β-carotene in lipid-based microcapsules: digestive conditions, the composition, structure and physical state of microcapsules. Food Hydrocolloids 77:187−203

doi: 10.1016/j.foodhyd.2017.09.034
[47]

Abarca RL, Rodríguez FJ, Guarda A, Galotto MJ, Bruna JE. 2016. Characterization of β-cyclodextrin inclusion complexes containing an essential oil component. Food Chemistry 196:968−75

doi: 10.1016/j.foodchem.2015.10.023
[48]

Roquette Frères SA (ed.). 2012. KLEPTOSE(R)-Betacyclodextrins and Hydroxypropyl betacyclodextrins. France. 43 pp. www.roquette.com

[49]

López-Nicolás JM, Rodríguez-Bonilla P, García-Carmona F. 2014. Cyclodextrins and antioxidants. Critical Reviews in Food Science and Nutrition 54:251−76

doi: 10.1080/10408398.2011.582544
[50]

Zaibunnisa AH, Aini Marhanna MNA, Ainun Atirah M. 2011. Characterisation and solubility study of γ-cyclodextrin and β-carotene complex. International Food Research Journal 18:1061−65

[51]

Dela Cruz J, Flores F. 2020. Evaluation of physicochemical characteristics, in vitro release and antioxidant properties of β-carotene and β-cyclodextrin inclusion complexes with rice as food matrix. The Philippine Agricultural Scientist 103:337−48

doi: 10.62550/bk21017020
[52]

Ozkan G, Franco P, De Marco I, Xiao J, Capanoglu E. 2019. A review of microencapsulation methods for food antioxidants: principles, advantages, drawbacks and applications. Food Chemistry 272:494−506

doi: 10.1016/j.foodchem.2018.07.205
[53]

Arikan Ş, Rodway RG. 2000. Effect of cyclodextrin-encapsulated β-carotene on progesterone production by bovine luteal cells. Animal Reproduction Science 64:149−60

doi: 10.1016/S0378-4320(00)00202-5
[54]

de Oliveira VE, Almeida EWC, Castro HV, Edwards HGM, Dos Santos HF, et al. 2011. Carotenoids and β-cyclodextrin inclusion complexes: raman spectroscopy and theoretical investigation. Journal of Physical Chemistry A 115:8511−19

doi: 10.1021/jp2028142
[55]

Çelik SE, Bekdeser B, Tufan AN, Apak R. 2017. Modified radical scavenging and antioxidant activity measurement of β-carotene with β-cyclodextrins complexation in aqueous medium. Analytical Sciences 33:299−305

doi: 10.2116/analsci.33.299
[56]

Gul K, Tak A, Singh AK, Singh P, Yousuf B, et al. 2015. Chemistry. encapsulation, and health benefits of β-carotene - a review. Cogent Food & Agriculture 1:1

doi: 10.1080/23311932.2015.1018696
[57]

Fernández-García E, Carvajal-Lérida I, Rincón F, Ríos JJ, Pérez-Gálvez A. 2010. In vitro intestinal absorption of carotenoids delivered as molecular inclusion complexes with β-cyclodextrin is not inhibited by high-density lipoproteins. Journal of Agricultural and Food Chemistry 58:3213−21

doi: 10.1021/jf9041613
[58]

Flores FP, Kong F. 2021. Water dispersibility of the β-carotene source and its effect on the physical, thermal, and in vitro release properties of an inclusion complex. International Journal of Food Science & Technology 56:3618−26

[59]

Cerón-García MC, González-López CV, Camacho-Rodríguez J, López-Rosales L, García-Camacho F, et al. 2018. Maximizing carotenoid extraction from microalgae used as food additives and determined by liquid chromatography (HPLC). Food Chemistry 257:316−24

doi: 10.1016/j.foodchem.2018.02.154
[60]

Gómez-Mascaraque LG, Perez-Masiá R, González-Barrio R, Periago MJ, López-Rubio A. 2017. Potential of microencapsulation through emulsion-electrospraying to improve the bioaccesibility of β-carotene. Food Hydrocolloids 73:1−12

doi: 10.1016/j.foodhyd.2017.06.019
[61]

López-Rodríguez M, Cerón-García MC, López-Rosales L, Navarro-López E, Sánchez-Mirón A, et al. 2020. Improved extraction of bioactive compounds from biomass of the marine dinoflagellate microalga Amphidinium carterae. Bioresource Technology 313:123518

doi: 10.1016/j.biortech.2020.123518
[62]

Chatjigakis AK, Donzé C, Coleman AW. 1992. Solubility behavior of β-cyclodextrin in water/cosolvent mixtures. Analytical Chemistry 64:1632−34

doi: 10.1021/ac00038a022
[63]

Taungbodhitham AK, Jones GP, Wahlqvist ML, Briggs DR. 1998. Evaluation of extraction method for the analysis of carotenoids in fruits and vegetables. Food Chemistry 63:577−84

doi: 10.1016/S0308-8146(98)00011-9
[64]

Calvo MM, Dado D, Santa-María G. 2007. Influence of extraction with ethanol or ethyl acetate on the yield of lycopene, β-carotene, phytoene and phytofluene from tomato peel powder. European Food Research and Technology 224:567−71

doi: 10.1007/s00217-006-0335-8
[65]

Bulani VD, Kothavade PS, Kundaikar HS, Gawali NB, Chowdhury AA, et al. 2016. Inclusion complex of ellagic acid with β-cyclodextrin: characterization and in vitro anti-inflammatory evaluation. Journal of Molecular Structure 1105:308−15

doi: 10.1016/j.molstruc.2015.08.054
[66]

Jain A, Thakur D, Ghoshal G, Katare OP, Shivhare US. 2015. Microencapsulation by complex coacervation using whey protein isolates and gum acacia: an approach to preserve the functionality and controlled release of β-carotene. Food and Bioprocess Technology 8:1635−44

doi: 10.1007/s11947-015-1521-0
[67]

de Kruif CG, Weinbreck F, de Vries R. 2004. Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science 9:340−49

doi: 10.1016/j.cocis.2004.09.006
[68]

Jain A, Thakur D, Ghoshal G, Katare OP, Shivhare US. 2016. Characterization of microcapsulated beta-carotene formed by complex coacervation using casein and gum tragacanth. International Journal of Biological Macromolecules 87:101−13

doi: 10.1016/j.ijbiomac.2016.01.117
[69]

Dhakal SP, He J. 2020. Microencapsulation of vitamins in food applications to prevent losses in processing and storage: a review. Food Research International 137:109326

doi: 10.1016/j.foodres.2020.109326
[70]

Mihalcea L, Turturică M, Barbu V, Ioniţă E, Pătraşcu L, et al. 2018. Transglutaminase mediated microencapsulation of sea buckthorn supercritical CO2 extract in whey protein isolate and valorization in highly value added food products. Food Chemistry 262:30−38

doi: 10.1016/j.foodchem.2018.04.067
[71]

Butstraen C, Salaün F. 2014. Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydrate Polymers 99:608−16

doi: 10.1016/j.carbpol.2013.09.006
[72]

Auxtero GMJ. 2018. Characterization of beta-carotene coacervates formed with different wall combinations of chitosan, gum Arabic, and sodium tripolyphosphate. Unpublished Undergraduate Thesis. University of the Philippines Los Banos. 80 pp

[73]

Roman MJ, Burri BJ, Singh RP. 2012. Release and bioaccessibility of beta-carotene from fortified almond butter during in vitro digestion. Journal of Agricultural and Food Chemistry 60:9659−66

doi: 10.1021/jf302843w
[74]

Ozvural EB, Huang Q. 2018. Quality differences of hamburger patties incorporated with encapsulated β carotene both as an additive and edible coating. Journal of Food Processing and Preservation 42:e13353

doi: 10.1111/jfpp.13353
[75]

Liu W, Wang J, McClements DJ, Zou L. 2018. Encapsulation of β-carotene-loaded oil droplets in caseinate/alginate microparticles: Enhancement of carotenoid stability and bioaccessibility. Journal of Functional Foods 40:527−35

doi: 10.1016/j.jff.2017.11.046
[76]

Zhang H, Tan S, Gan H, Zhang H, Xia N, et al. 2023. Investigation of the formation mechanism and beta-carotene encapsulation stability of emulsion gels based on egg yolk granules and sodium alginate. Food Chemistry 400:134032

doi: 10.1016/j.foodchem.2022.134032
[77]

Zhong L, Ma N, Wu Y, Zhao L, Ma G, et al. 2019. Gastrointestinal fate and antioxidation of β-carotene emulsion prepared by oat protein isolate-Pleurotus ostreatus beta-glucan conjugate. Carbohydrate Polymers 221:10−20

doi: 10.1016/j.carbpol.2019.05.085
[78]

Cheng JH, Hu YN, Luo ZG, Chen W, Chen HM, et al. 2017. Preparation and properties of octenyl succinate β-cyclodextrin and its application as an emulsion stabilizer. Food Chemistry 218:116−21

doi: 10.1016/j.foodchem.2016.09.019
[79]

Flores FP, Singh RK, Kerr WL, Phillips DR, Kong F. 2015. In vitro release properties of encapsulated blueberry (Vaccinium ashei) extracts. Food Chemistry 168:225−32

doi: 10.1016/j.foodchem.2014.07.059
[80]

Kong L, Bhosale R, Ziegler GR. 2018. Encapsulation and stabilization of β-carotene by amylose inclusion complexes. Food Research International 105:446−52

doi: 10.1016/j.foodres.2017.11.058
[81]

Pfitzner I, Francz PI, Biesalski HK. 2000. Carotenoid : methyl-beta-cyclodextrin formulations: an improved method for supplementation of cultured cells. Biochimica et Biophysica Acta (BBA) - General Subjects 1474:163−68

doi: 10.1016/s0304-4165(00)00014-3
[82]

Basu HN, Del Vecchio A. 2001. Encapsulated carotenoid preparations from high-carotenoid canola oil and cyclodextrins and their stability. Journal of the American Oil Chemists Society 78:375

doi: 10.1007/s11746-001-0271-6
[83]

Lancrajan I, Diehl HA, Socaciu C, Engelke M, Zorn-Kruppa M. 2001. Carotenoid incorporation into natural membranes from artificial carriers: liposomes and beta-cyclodextrins. Chemistry and Physics of Lipids 112:1−10

doi: 10.1016/s0009-3084(01)00138-4
[84]

Polyakov NE, Leshina TV, Konovalova TA, Hand EO, Kispert LD. 2004. Inclusion complexes of carotenoids with cyclodextrins: 1H NMR, EPR, and optical studies. Free Radical Biology and Medicine 36:872−80

doi: 10.1016/j.freeradbiomed.2003.12.009
[85]

Kanofsky JR, Sima PD. 2009. Quenching of singlet oxygen by a carotenoid-cyclodextrin complex: the importance of aggregate formation. Photochemistry and Photobiology 85:391−99

doi: 10.1111/j.1751-1097.2008.00461.x
[86]

Ivanova T, Mircheva K, Balashev K, Panaiotov I, Boury F. 2015. Monolayer kinetic model of formation of β-cyclodextrin-β-carotene inclusion complex. Colloids and Surfaces B: Biointerfaces 135:542−48

doi: 10.1016/j.colsurfb.2015.07.055
[87]

de Lima Petito N, da Silva Dias D, Costa VG, Falcão DQ, de Lima Araujo KG. 2016. Increasing solubility of red bell pepper carotenoids by complexation with 2-hydroxypropyl-beta-cyclodextrin. Food Chemistry 208:124−31

doi: 10.1016/j.foodchem.2016.03.122
[88]

Fernández-García E, Pérez-Gálvez A. 2017. Carotenoid: β-cyclodextrin stability is independent of pigment structure. Food Chemistry 221:1317−21

doi: 10.1016/j.foodchem.2016.11.024
[89]

Lim ASL, Roos YH. 2018. Amorphous wall materials properties and degradation of carotenoids in spray dried formulations. Journal of Food Engineering 223:62−69

doi: 10.1016/j.jfoodeng.2017.12.001
[90]

Chen X, Liang R, Zhong F, Yokoyama WH. 2020. Effect of beta-carotene status in microcapsules on its in vivo bioefficacy and in vitro bioaccessibility. Food Hydrocolloids 106:105848

doi: 10.1016/j.foodhyd.2020.105848
[91]

Niu B, Shao P, Sun P. 2020. Ultrasound-assisted emulsion electrosprayed particles for the stabilization of β-carotene and its nutritional supplement potential. Food Hydrocolloids 102:105634

doi: 10.1016/j.foodhyd.2019.105634
[92]

Liu X, Wang P, Zou YX, Luo ZG, Tamer TM. 2020. Co-encapsulation of vitamin C and β-Carotene in liposomes: Storage stability, antioxidant activity, and in vitro gastrointestinal digestion. Food Research International 136:109587

doi: 10.1016/j.foodres.2020.109587
[93]

Chen J, Li F, Li Z, McClements DJ, Xiao H. 2017. Encapsulation of carotenoids in emulsion-based delivery systems: enhancement of β-carotene water-dispersibility and chemical stability. Food Hydrocolloids 69:49−55

doi: 10.1016/j.foodhyd.2017.01.024
[94]

Dodington DW, Fritz PC, Sullivan PJ, Ward WE. 2015. Higher intakes of fruits and vegetables, β-carotene, vitamin C, α-tocopherol, EPA, and DHA are positively associated with periodontal healing after nonsurgical periodontal therapy in nonsmokers but not in smokers. Journal of Nutrition 145:2512−19

doi: 10.3945/jn.115.211524
[95]

Pinkaew S, Wegmuller R, Wasantwisut E, Winichagoon P, Hurrell RF, Tanumihardjo SA. 2014. Triple-fortified rice containing vitamin A reduced marginal vitamin A deficiency and increased vitamin A liver stores in school-aged Thai children. Journal of Nutrition 144:519−24

doi: 10.3945/jn.113.182998
[96]

Schweiggert RM, Kopec RE, Villalobos-Gutierrez MG, Högel J, Quesada S, et al. 2014. Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: a randomised cross-over study. British Journal of Nutrition 111:490−98

doi: 10.1017/S0007114513002596
[97]

Van Loo-Bouwman CA, Naber THJ, Minekus M, van Breemen RB, Hulshof PJM, et al. 2014. Food matrix effects on bioaccessibility of β-carotene can be measured in an in vitro gastrointestinal model. Journal of Agricultural and Food Chemistry 62:950−55

doi: 10.1021/jf403312v
[98]

Barrett A, Froio D, Richardson M. 2015. Vitamin stabilization for a long-term spaceflight. Food Technology: 45-51

[99]

Soukoulis C, Fisk ID, Bohn T. 2014. Ice cream as a vehicle for incorporating health-promoting ingredients: Conceptualization and overview of quality and storage stability. Comprehensive Reviews in Food Science and Food Safety 13:627−55

doi: 10.1111/1541-4337.12083
[100]

Rodríguez AM, Sastre S, Ribot J, Palou A. 2005. Beta-carotene uptake and metabolism in human lung bronchial epithelial cultured cells depending on delivery vehicle. Biochimica et Biophysica Acta 1740:132−38

doi: 10.1016/j.bbadis.2005.01.004
[101]

Flores FP, Kong F. 2017. In vitro release kinetics of microencapsulated materials and the effect of the food matrix. Annual Review of Food Science and Technology 8:237−59

doi: 10.1146/annurev-food-030216-025720