[1]

Yahya MFZR, Alias Z, Karsani SA. 2018. Antibiofilm activity and mode of action of DMSO alone and its combination with afatinib against Gram-negative pathogens. Folia Microbiologica 63:23−30

doi: 10.1007/s12223-017-0532-9
[2]

Yaacob MF, Murata A, Nor NHM, Jesse FFA, Yahya MFZR. 2021. Biochemical composition, morphology and antimicrobial susceptibility pattern of Corynebacterium pseudotuberculosis biofilm. Journal of King Saud University-Science 33(1):101225

doi: 10.1016/j.jksus.2020.10.022
[3]

Kamaruzzaman ANA, Tengku Zainal Mulok TE, Mohamad Nor NH, Yahya MFZR. 2022. FTIR spectral changes in Candida albicans biofilm following exposure to antifungals. Malaysian Applied Biology 51(4):57−66

doi: 10.55230/mabjournal.v51i4.11
[4]

Johari NA, Aazmi MS, Yahya MFZR. 2023. FTIR spectroscopic study of inhibition of chloroxylenol-based disinfectant against Salmonella enterica serovar Thyphimurium biofilm. Malaysian Applied Biology 52(2):97−107

doi: 10.55230/mabjournal.v52i2.2614
[5]

Hamdan HF, Ross EER, Jalil MTM, Hashim MA, Yahya MFZR. 2024. Antibiofilm efficacy and mode of action of Etlingera elatior extracts against Staphylococcus aureus. Malaysian Applied Biology 53(1):27−34

doi: 10.55230/mabjournal.v53i1.2808
[6]

Safini INM, Zakaria NFS, Saad MIH, Yahya MFZ, Jamil NM. 2024. Understanding bacterial persistence under antibiotic pressure: a review. Science Letters 18(2):56−69

[7]

Landry KS, Morey JM, Bharat B, Haney NM, Panesar SS. 2020. Biofilms — impacts on human health and its relevance to space travel. Microorganisms 8(7):998

doi: 10.3390/microorganisms8070998
[8]

Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. 2018. Biofilms in the food industry: Health aspects and control methods. Frontiers in Microbiology 9:898

doi: 10.3389/fmicb.2018.00898
[9]

Yahya MFZR, Hidayah Mohamad Nor M, Mahat MM, Siburian R. 2024. Edible coating, food-contact surface coating, and nanosensor for biofilm mitigation plans in food industry. Food Materials Research 4:e025

doi: 10.48130/fmr-0024-0016
[10]

Linares DM, Gómez C, Renes E, Fresno JM, Tornadijo ME, et al. 2017. Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Frontiers in Microbiology 8:846

doi: 10.3389/fmicb.2017.00846
[11]

Tatsaporn T, Kornkanok K. 2020. Using potential lactic acid bacteria biofilms and their compounds to control biofilms of foodborne pathogens. Biotechnology Reports 26:e00477

doi: 10.1016/j.btre.2020.e00477
[12]

Wierzbicka A, Mańkowska-Wierzbicka D, Mardas M, Stelmach-Mardas M. 2021. Role of probiotics in modulating human gut microbiota populations and activities in patients with colorectal cancer - a systematic review of clinical trials. Nutrients 13(4):1160

doi: 10.3390/nu13041160
[13]

Zapaśnik A, Sokołowska B, Bryła M. 2022. Role of lactic acid bacteria in food preservation and safety. Foods 11(9):1283

doi: 10.3390/foods11091283
[14]

Ibrahim SA, Ayivi RD, Zimmerman T, Siddiqui SA, Altemimi AB, et al. 2021. Lactic acid bacteria as antimicrobial agents: Food safety and microbial food spoilage prevention. Foods 10(12):3131

doi: 10.3390/foods10123131
[15]

Pessione E. 2012. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Frontiers in Cellular and Infection Microbiology 2:86

doi: 10.3389/fcimb.2012.00086
[16]

Hegazy EE, Gadallah MA, Shoukr TG, Bahey MG. 2025. Evaluation of the antagonistic activity of Lactobacillus strains against pathogenic organisms isolated from various infected wounds: an in vitro study. Egyptian Journal of Medical Microbiology 34(1):131−40

doi: 10.21608/ejmm.2024.326234.1352
[17]

Ozma MA, Ghotaslou R, Asgharzadeh M, Abbasi A, Rezaee MA, et al. 2024. Cytotoxicity assessment and antimicrobial effects of cell-free supernatants from probiotic lactic acid bacteria and yeast against multi-drug resistant Escherichia coli. Letters in Applied Microbiology 77(9):ovae084

doi: 10.1093/lambio/ovae084
[18]

Parappilly SJ, Radhakrishnan EK, George SM. 2024. Antibacterial and antibiofilm activity of human gut lactic acid bacteria. Brazilian Journal of Microbiology 55:3529−39

doi: 10.1007/s42770-024-01530-8
[19]

Kim HJ, Youn HY, Moon JS, Kim H, Seo KH. 2024. Comparative anti-microbial and anti-biofilm activities of postbiotics derived from kefir and normal raw milk lactic acid bacteria against bovine mastitis pathogens. LWT 191:115699

doi: 10.1016/j.lwt.2023.115699
[20]

Alizadeh Behbahani B, Noshad M. 2024. An investigation into the probiotic, anti-bacterial, anti-biofilm, and safety properties of Lactococcus lactis NJ414. LWT 201:116251

doi: 10.1016/j.lwt.2024.116251
[21]

Raras TYM, Firdausy AF, Kinanti IR, Noorhamdani N. 2019. Anti-biofilm activity of lactic acid bacteria isolated from kefir against multidrug-resistant Klebsiella pneumoniae. Journal of Pure & Applied Microbiology 13(2):983−992

doi: 10.22207/jpam.13.2.35
[22]

Cui X, Shi Y, Gu S, Yan X, Chen H, et al. 2018. Antibacterial and antibiofilm activity of lactic acid bacteria isolated from traditional artisanal milk cheese from Northeast China against enteropathogenic bacteria. Probiotics and Antimicrobial Proteins 10:601−610

doi: 10.1007/s12602-017-9364-9
[23]

Ben Taheur F, Kouidhi B, Fdhila K, Elabed H, Ben Slama R, et al. 2016. Anti-bacterial and anti-biofilm activity of probiotic bacteria against oral pathogens. Microbial Pathogenesis 97:213−20

doi: 10.1016/j.micpath.2016.06.018
[24]

Broberg A, Jacobsson K, Ström K, Schnürer J. 2007. Metabolite profiles of lactic acid bacteria in grass silage. Applied and Environmental Microbiology 73(17):5547−52

doi: 10.1128/AEM.02939-06
[25]

Msimbira LA, Naamala J, Antar M, Subramanian S, Smith DL. 2022. Effect of microbial cell-free supernatants extracted from a range of pH levels on corn (Zea mays L.) and tomato (Solanum lycopersicum L.) seed germination and seedling growth. Frontiers in Sustainable Food Systems 6:789335

doi: 10.3389/fsufs.2022.789335
[26]

Liu H, Zhang R, Zhang Q, Tian M, Ren X, et al. 2023. Antifungal activity of cell-free supernatants from Lactobacillus pentosus 86 against Alternaria gaisen. Horticulturae 9(8):911

doi: 10.3390/horticulturae9080911
[27]

Salem MA, Jüppner J, Bajdzienko K, Giavalisco, P. 2016. Protocol: a fast, comprehensive and reproducible one-step extraction method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample. Plant Methods 12:45

doi: 10.1186/s13007-016-0146-2
[28]

Wang N, Sadiq FA, Li S, He G, Yuan L. 2020. Tandem mass tag-based quantitative proteomics reveals the regulators in biofilm formation and biofilm control of Bacillus licheniformis. Food Control 110:107029

doi: 10.1016/j.foodcont.2019.107029
[29]

Mao Y, Wang Y, Luo X, Chen X, Wang G. 2023. Impact of cell-free supernatant of lactic acid bacteria on Staphylococcus aureus biofilm and its metabolites. Frontiers in Veterinary Science 10:1184989

doi: 10.3389/fvets.2023.1184989
[30]

Krishnamoorthi R, Srinivash M, Mahalingam PU, Malaikozhundan B, Suganya P, et al. 2022. Antimicrobial, anti-biofilm, antioxidant and cytotoxic effects of bacteriocin by Lactococcus lactis strain CH3 isolated from fermented dairy products — an in vitro and in silico approach. International Journal of Biological Macromolecules 220:291−306

doi: 10.1016/j.ijbiomac.2022.08.087
[31]

Kiymaci ME, Altanlar N, Gumustas M, Ozkan SA, Akin A. 2018. Quorum sensing signals and related virulence inhibition of Pseudomonas aeruginosa by a potential probiotic strain's organic acid. Microbial pathogenesis 121:190−97

doi: 10.1016/j.micpath.2018.05.042
[32]

Jiang YH, Ying JP, Xin WG, Yang LY, Li XZ, et al. 2022. Antibacterial activity and action target of phenyllactic acid against Staphylococcus aureus and its application in skim milk and cheese. Journal of Dairy Science 105(12):9463−75

doi: 10.3168/jds.2022-22262
[33]

Linley E, Denyer SP, McDonnell G, Simons C, Maillard JY. 2012. Use of hydrogen peroxide as a biocide: New consideration of its mechanisms of biocidal action. Journal of Antimicrobial Chemotherapy 67(7):1589−96

doi: 10.1093/jac/dks129
[34]

Vishakha K, Das S, Banerjee S, Mondal S, Ganguli A. 2020. Allelochemical catechol comprehensively impedes bacterial blight of rice caused by Xanthomonas oryzae pv. oryzae. Microbial Pathogenesis 149:104559

doi: 10.1016/j.micpath.2020.104559
[35]

Luís Â, Silva F, Sousa S, Duarte AP, Domingues F. 2014. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling 30(1):69−79

doi: 10.1080/08927014.2013.845878
[36]

Kıray E. 2021. Antibiofilm and anti-quorum sensing activities of vaginal origin probiotics. European Journal of Biology 80(2):82−90

doi: 10.26650/eurjbiol.2021.932640
[37]

Kim JH, Jang HJ, Lee NK, Paik HD. 2022. Antibacterial and antibiofilm effect of cell-free supernatant of Lactobacillus brevis KCCM 202399 isolated from Korean fermented food against Streptococcus mutans KCTC 5458. Journal of Microbiology and Biotechnology 32(1):56−63

doi: 10.4014/jmb.2109.09045
[38]

Ciandrini E, Campana R, Baffone W. 2017. Live and heat-killed Lactobacillus spp. interfere with Streptococcus mutans and Streptococcus oralis during biofilm development on titanium surface. Archives of Oral Biology 78:48−57

doi: 10.1016/j.archoralbio.2017.02.004
[39]

Hassan B, Chatha SAS, Hussain AI, Zia KM, Akhtar N. 2018. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules 109:1095−107

doi: 10.1016/j.ijbiomac.2017.11.097
[40]

Zdulski JA, Rutkowski KP, Konopacka D. 2024. Strategies to extend the shelf life of fresh and minimally processed fruit and vegetables with edible coatings and modified atmosphere packaging. Applied Sciences 14(23):11074

doi: 10.3390/app142311074
[41]

Behjati J, Yazdanpanah S. 2021. Nanoemulsion and emulsion vitamin D3 fortified edible film based on quince seed gum. Carbohydrate Polymers 262:117948

doi: 10.1016/j.carbpol.2021.117948
[42]

Weng S, Marcet I, Rendueles M, Díaz M. 2025. Edible films from the laboratory to industry: a review of the different production methods. Food and Bioprocess Technology 18:3245−71

doi: 10.1007/s11947-024-03641-4
[43]

Suhag R, Kumar N, Petkoska AT, Upadhyay A. 2020. Film formation and deposition methods of edible coating on food products: a review. Food Research International 136:109582

doi: 10.1016/j.foodres.2020.109582
[44]

Suriati L, Utama IMS, Harsojuwono BA, Gunam IBW. 2020. Incorporating additives for stability of Aloe gel potentially as an edible coating. AIMS Agriculture and Food 5:327−36

doi: 10.3934/agrfood.2020.3.327
[45]

Mutia R, Rifqah RA, Antika VA. 2024. Aplikasi emulsi (O/W) berbagai konsentrasi minyak kelapa sawit sebagai edible coating pada buah tomat (Solanum lycopersicum L.). Jurnal Teknologi dan Industri Pertanian Indonesia 16(1):27−35

doi: 10.17969/jtipi.v16i1.29112
[46]

Jutinico-Shubach A, Gutiérrez-Cortés C, Suarez H. 2020. Antilisterial activity of chitosan-based edible coating incorporating cell-free supernatant from Pediococcus pentosaceus 147 on the preservation of fresh cheese. Journal of Food Processing and Preservation 44(9):e14715

doi: 10.1111/jfpp.14715
[47]

Barrios-Salgado G, Vázquez-Ovando A, Rosas-Quijano R, Gálvez-López D, Salvador-Figueroa M. 2022. Inhibitory capacity of chitosan films containing lactic acid bacteria cell-free supernatants against Colletotrichum gloeosporioides. Food and Bioprocess Technology 15(5):1182−87

doi: 10.1007/s11947-022-02808-1
[48]

Beristain-Bauza SC, Mani-López E, Palou E, López-Malo A. 2016. Antimicrobial activity and physical properties of protein films added with cell-free supernatant of Lactobacillus rhamnosus. Food Control 62:44−51

doi: 10.1016/j.foodcont.2015.10.007
[49]

Khalil OAA, Mounir AM, Hassanien RA. 2020. Effect of gamma irradiated Lactobacillus bacteria as an edible coating on enhancing the storage of tomato under cold storage conditions. Journal of Radiation Research and Applied Sciences 13(1):318−30

doi: 10.1080/16878507.2020.1723886
[50]

Álvarez A, Manjarres JJ, Ramírez C, Bolívar G. 2021. Use of an exopolysaccharide-based edible coating and lactic acid bacteria with antifungal activity to preserve the postharvest quality of cherry tomato. LWT 151:112225

doi: 10.1016/j.lwt.2021.112225
[51]

Silva SPM, Ribeiro SC, Teixeira JA, Silva CCG. 2022. Application of an alginate-based edible coating with bacteriocin-producing Lactococcus strains in fresh cheese preservation. LWT 153:112486

doi: 10.1016/j.lwt.2021.112486
[52]

Dong J, Wang S, Li M, Liu J, Sun Z, et al. 2023. Application of a chitosan-based active packaging film prepared with cell-free supernatant of Lacticaseibacillus paracasei ALAC-4 in Mongolian cheese preservation. Journal of Food Protection 86(12):100158

doi: 10.1016/j.jfp.2023.100158
[53]

Ceylan HG. 2024. Development and characterization of innovative bio-based edible films supplemented with cell-free supernatant and whole-cell postbiotic of Lactobacillus gasseri. Food Bioscience 61:104825

doi: 10.1016/j.fbio.2024.104825
[54]

Giaouris E. 2020. Application of lactic acid bacteria and their metabolites against foodborne pathogenic bacterial biofilms. In Recent Trends in Biofilm Science and Technology. Amsterdam: Elsevier. pp. 205−32 doi: 10.1016/B978-0-12-819497-3.00009-X

[55]

Pang X, Song X, Chen M, Tian S, Lu Z, et al. 2022. Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry. Comprehensive Reviews in Food Science and Food Safety 21(2):1657−76

doi: 10.1111/1541-4337.12922
[56]

Masebe RD, Thantsha MS. 2022. Anti-biofilm activity of cell free supernatants of selected lactic acid bacteria against Listeria monocytogenes isolated from avocado and cucumber fruits and from an avocado processing plant. Foods 11(18):2872

doi: 10.3390/foods11182872
[57]

Dinçer E. 2024. Impact of lactic acid bacteria strains against Listeria monocytogenes biofilms on various food-contact surfaces. Archives of Microbiology 206(2):80

doi: 10.1007/s00203-023-03811-6
[58]

Saeed A H, Salam AI. 2013. Current limitations and challenges with lactic acid bacteria: A review. Food and Nutrition Sciences 4(11A):73−87

doi: 10.4236/fns.2013.411a010
[59]

Elsser-Gravesen D, Elsser-Gravesen A. (Eds.) 2013. Biopreservatives. In Biotechnology of Food and Feed Additives, eds. Zorn H, Czermak P. Vol. 143. Berlin, Heidelberg: Springer. pp. 29−49. doi: 10.1007/10_2013_234

[60]

Obis D, Paris M, Ouwehand AC. 2019. The safety of lactic acid bacteria for use in foods. In Lactic acid bacteria, eds. Vinderola G, Ouwehand A, Salminen S, von Wright A. Boca Raton: CRC Press. pp. 355−69. doi: 10.1201/9780429057465-22

[61]

Rossetti L, Carminati D, Zago M, Giraffa G. 2009. A qualified presumption of safety approach for the safety assessment of Grana Padano whey starters. International Journal of Food Microbiology 130(1):70−73

doi: 10.1016/j.ijfoodmicro.2009.01.003
[62]

FAO. 2011. Codex alimentarius, milk and milk products. Rome: World Health Organization and Food and Agriculture Organization of the United Nations. www.codexalimentarius.org

[63]

Ray Mohapatra A, Jeevaratnam K. 2019. Inhibiting bacterial colonization on catheters: antibacterial and antibiofilm activities of bacteriocins from Lactobacillus plantarum SJ33. Journal of Global Antimicrobial Resistance 19:85−92

doi: 10.1016/j.jgar.2019.02.021
[64]

Xiang YZ, Zhang YM, Liu YY, Zhang M, Lin LB, et al. 2021. Purification, characterization, and antibacterial and antibiofilm activity of a novel bacteriocin against Salmonella enteritidis. Food Control 127:108110

doi: 10.1016/j.foodcont.2021.108110
[65]

Kim NN, Kim WJ, Kang SS. 2019. Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella Typhimurium. Food Control 98:274−80

doi: 10.1016/j.foodcont.2018.11.004
[66]

Yoon JW, Kang SS. 2020. In vitro antibiofilm and anti-inflammatory properties of bacteriocins produced by Pediococcus acidilactici against Enterococcus faecalis. Foodborne Pathogens and Disease 17(12):764−71

doi: 10.1089/fpd.2020.2804
[67]

Li HW, Xiang YZ, Zhang M, Jiang YH, Zhang Y, et al. 2021. A novel bacteriocin from Lactobacillus salivarius against Staphylococcus aureus: isolation, purification, identification, antibacterial and antibiofilm activity. LWT 140:110826

doi: 10.1016/j.lwt.2020.110826
[68]

Castellano P, Belfiore C, Fadda S, Vignolo G. 2008. A review of bacteriocinogenic lactic acid bacteria used as bioprotective cultures in fresh meat produced in Argentina. Meat Science 79(3):483−99

doi: 10.1016/j.meatsci.2007.10.009
[69]

Morgan SM, Galvin M, Ross RP, Hill C. 2001. Evaluation of a spray-dried lacticin 3147 powder for the control of Listeria monocytogenes and Bacillus cereus in a range of food systems. Letters Applied Microb 33(5):387−91

doi: 10.1046/j.1472-765X.2001.01016.x
[70]

O'Sullivan L, O'Connor EB, Ross RP, Hill C. 2006. Evaluation of live-culture producing lacticin 3147 as a treatment for the control of Listeria monocytogenes on the surface of smear-ripened cheese. Journal of Applied Microbiology 100(1):125−43

doi: 10.1111/j.1365-2672.2005.02747.x
[71]

Georgalaki MD, Van Den Berghe E, Kritikos D, Devreese B, Van Beeumen J, et al. 2002. Macedocin, a food-grade lantibiotic produced by Streptococcus macedonicus ACA-DC 198. Applied and Environmental Microbiology 68(12):5891−903

doi: 10.1128/AEM.68.12.5891-5903.2002
[72]

Rodríguez E, Arqués JL, Rodríguez R, Nuñez M, Medina M. 2003. Reuterin production by lactobacilli isolated from pig faeces and evaluation of probiotic traits. Letters in Applied Microbiology 37(3):259−63

doi: 10.1046/j.1472-765X.2003.01390.x
[73]

Parada JL, Caron CR, Medeiros ABP, Soccol CR. 2007. Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Brazilian Archives of Biology and Technology 50(3):521−42

doi: 10.1590/s1516-89132007000300018