| [1] |
Li Z, Chen Y, Li Y, Zeng Y, Li W, et al. 2023. Whole-genome resequencing reveals the diversity of patchouli germplasm. International Journal of Molecular Sciences 24:10970 doi: 10.3390/ijms241310970 |
| [2] |
Muhammad S, Hisbullah H, Rahmi J, Ritonga FN, Prajaputra V. 2022. Vacuum distillation of aceh patchouli oil into hi-grade and crystal patchouli with rotary vacuum evaporator. Journal of Patchouli and Essential Oil Products 1:36−41 doi: 10.24815/jpeop.v1i2.25408 |
| [3] |
Swamy MK, Sinniah UR. 2015. A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: an aromatic medicinal plant of industrial importance. Molecules 20:8521−47 doi: 10.3390/molecules20058521 |
| [4] |
Kusuma HS, Altway A, Mahfud M. 2017. Solvent-free microwave extraction of essential oil from dried patchouli (Pogostemon cablin Benth) leaves. Journal of Industrial and Engineering Chemistry 58:343−48 doi: 10.1016/j.jiec.2017.09.047 |
| [5] |
Hu G, Peng C, Xie X, Zhang S, Cao X. 2017. Availability, pharmaceutics, security, pharmacokinetics, and pharmacological activities of patchouli alcohol. Evidence-Based Complementary and Alternative Medicine 2017:4850612 doi: 10.1155/2017/4850612 |
| [6] |
Kami C, Lorrain S, Hornitschek P, Fankhauser C. 2010. Light-regulated plant growth and development. Current Topics in Developmental Biology 91:29−66 doi: 10.1016/S0070-2153(10)91002-8 |
| [7] |
Kirchhoff H. 2019. Chloroplast ultrastructure in plants. New Phytologist 223:565−74 doi: 10.1111/nph.15730 |
| [8] |
Bailey-Serres J, Pierik R, Ruban A, Wingler A. 2018. The dynamic plant: capture, transformation, and management of energy. Plant Physiology 176:961−66 doi: 10.1104/pp.18.00041 |
| [9] |
Clarke A. 2019. Energy flow in growth and production. Trends in Ecology & Evolution 34:502−09 |
| [10] |
Bongirwar R, Shukla P. 2023. Metabolic sink engineering in cyanobacteria: Perspectives and applications. Bioresource Technology 379:128974 doi: 10.1016/j.biortech.2023.128974 |
| [11] |
de Wit M, Galvão VC, Fankhauser C. 2016. Light-mediated hormonal regulation of plant growth and development. Annual Review of Plant Biology 67:513−37 doi: 10.1146/annurev-arplant-043015-112252 |
| [12] |
Misra M. 1995. Growth, photosynthetic pigment content and oil yield of Pogostemon cablin grown under sun and shade conditions. Biologia Plantarum 37:219−23 doi: 10.1007/BF02913216 |
| [13] |
Ribeiro AS, Ribeiro MS, Bertolucci SKV, Bittencourt WJM, De Carvalho AA, et al. 2018. Colored shade nets induced changes in growth, anatomy and essential oil of Pogostemon cablin. Anais da Academia Brasileira de Ciencias 90:1823−35 doi: 10.1590/0001-3765201820170299 |
| [14] |
Dixon RA, Dickinson AJ. 2024. A century of studying plant secondary metabolism—From "what?" to "where, how, and why?" . Plant Physiology 195:48−66 doi: 10.1093/plphys/kiad596 |
| [15] |
Liu X, Wu M, Zhang Y, Cao H. 2018. Molecular cloning and expression analysis of the circadian clock for patchoulol synthase gene in Pogostemon cablin (Blanco) Benth. Pharmacognosy Magazine 14:519−24 doi: 10.4103/pm.pm_250_18 |
| [16] |
Wang X, Chen X, Zhong L, Zhou X, Tang Y, et al. 2019. PatJAZ6 acts as a repressor regulating JA-induced biosynthesis of patchouli alcohol in Pogostemon cablin. International Journal of Molecular Sciences 20:6038 doi: 10.3390/ijms20236038 |
| [17] |
Chen X, Li J, Wang X, Zhong L, Tang Y, et al. 2019. Full-length transcriptome sequencing and methyl jasmonate-induced expression profile analysis of genes related to patchoulol biosynthesis and regulation in Pogostemon cablin. BMC Plant Biology 19:266−83 doi: 10.1186/s12870-019-1884-x |
| [18] |
Yi R, Yan J, Xie D. 2020. Light promotes jasmonate biosynthesis to regulate photomorphogenesis in Arabidopsis. Science China-Life Sciences 63:943−52 doi: 10.1007/s11427-019-1584-4 |
| [19] |
Shen Y, Li W, Zeng Y, Li Z, Chen Y, et al. 2022. Chromosome-level and haplotype-resolved genome provides insight into the tetraploid hybrid origin of patchouli. Nature Communications 13:3511−25 doi: 10.1038/s41467-022-31121-w |
| [20] |
Xiao HM, Cai WJ, Ye TT, Ding J, Feng YQ. 2018. Spatio-temporal profiling of abscisic acid, indoleacetic acid and jasmonic acid in single rice seed during seed germination. Analytica Chimica Acta 1031:119−27 doi: 10.1016/j.aca.2018.05.055 |
| [21] |
Šimura J, Antoniadi I, Široká J, Tarkowská D, Strnad M, et al. 2018. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiology 177:476−89 doi: 10.1104/pp.18.00293 |
| [22] |
Qiu T, Li Y, Wu H, Yang H, Peng Z, et al. 2023. Tandem duplication and sub-functionalization of clerodane diterpene synthase originate the blooming of clerodane diterpenoids in Scutellaria barbata. The Plant Journal 116:375−88 doi: 10.1111/tpj.16377 |
| [23] |
Hu L, Wu Q, Wu C, Zhang C, Wu Z, et al. 2025. Light signaling‐dependent regulation of plastid RNA processing in Arabidopsis. Journal of Integrative Plant Biology 67:375−90 doi: 10.1111/jipb.13779 |
| [24] |
Zheng H, Fu X, Shao J, Tang Y, Yu M, et al. 2023. Transcriptional regulatory network of high-value active ingredients in medicinal plants. Trends in Plant Science 28:429−46 doi: 10.1016/j.tplants.2022.12.007 |
| [25] |
Wasternack C, Song S. 2017. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transciption. Journal of Experimental Botany 68:1303−21 doi: 10.1093/jxb/erw443 |
| [26] |
Jing Y, Lin R. 2020. Transcriptional regulatory network of the light signaling pathways. New Phytologist 227:683−97 doi: 10.1111/nph.16602 |
| [27] |
Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, et al. 2007. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661−65 doi: 10.1038/nature05960 |
| [28] |
Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, et al. 2022. Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology 23:680−94 doi: 10.1038/s41580-022-00479-6 |
| [29] |
Wasternack C, Hause B. 2016. OPDA-Ile - a new JA-Ile-independent signal? Plant Signaling & Behavior 11: e1253646 |
| [30] |
Bozorov TA, Dinh ST, Baldwin IT. 2017. JA but not JA-Ile is the cell-nonautonomous signal activating JA mediated systemic defenses to herbivory in Nicotiana attenuata. Journal of Integrative Plant Biology 59:552−71 doi: 10.1111/jipb.12545 |
| [31] |
Wu D, Chen L, Zhong B, Zhang Z, Huang H, et al. 2023. PcENO3 interacts with patchoulol synthase to positively affect the enzymatic activity and patchoulol biosynthesis in Pogostemon cablin. Physiologia Plantarum 175:e14055 doi: 10.1111/ppl.14055 |
| [32] |
Gangappa SN, Botto JF. 2016. The multifaceted roles of HY5 in plant growth and development. Molecular Plant 9:1353−65 doi: 10.1016/j.molp.2016.07.002 |
| [33] |
Hao X, Zhong Y, Nützmann HW, Fu X, Yan T, et al. 2019. Light-induced artemisinin biosynthesis is regulated by the bZIP transcription factor AaHY5 in Artemisia annua. Plant and Cell Physiology 60:1747−60 doi: 10.1093/pcp/pcz084 |
| [34] |
Darko E, Heydarizadeh P, Schoefs B, Sabzalian MR. 2014. Photosynthesis under artificial light: the shift in primary and secondary metabolism. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 369:20130243 doi: 10.1098/rstb.2013.0243 |
| [35] |
Lawson T, Blatt MR. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164:1556−70 doi: 10.1104/pp.114.237107 |
| [36] |
Schwartz A, Zeiger E. 1984. Metabolic energy for stomatal opening. Roles of photophosphorylation and oxidative phosphorylation. Planta 161:129−36 doi: 10.1007/BF00395472 |
| [37] |
Chen Q, Xiao Y, Ming Y, Peng R, Hu J, et al. 2022. Quantitative proteomics reveals redox-based functional regulation of photosynthesis under fluctuating light in plants. Journal of Integrative Plant Biology 64:2168−86 doi: 10.1111/jipb.13348 |
| [38] |
Rochaix JD. 2014. Regulation and dynamics of the light-harvesting system. Annual Review of Plant Biology 65:287−309 doi: 10.1146/annurev-arplant-050213-040226 |
| [39] |
Jin H, Fu M, Duan Z, Duan S, Li M, et al. 2018. LOW PHOTOSYNTHETIC EFFICIENCY 1 is required for light-regulated photosystem II biogenesis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 115:E6075−E84 doi: 10.1073/pnas.1807364115 |
| [40] |
Fiebig OC, Harris D, Wang D, Hoffmann MP, Schlau-Cohen GS. 2023. Ultrafast dynamics of photosynthetic light harvesting: strategies for acclimation across organisms. Annual Review of Physical Chemistry 74:493−520 doi: 10.1146/annurev-physchem-083122-111318 |
| [41] |
Jin H, Li M, Duan S, Fu M, Dong X, et al. 2016. Optimization of light-harvesting pigment improves photosynthetic efficiency. Plant Physiology 172:1720−31 doi: 10.1104/pp.16.00698 |
| [42] |
Negi S, Perrine Z, Friedland N, Kumar A, Tokutsu R, et al. 2020. Light regulation of light-harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae. The Plant Journal 103:584−603 doi: 10.1111/tpj.14751 |
| [43] |
Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee, et al. 2017. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chemical Reviews 117:249−93 doi: 10.1021/acs.chemrev.6b00002 |
| [44] |
Cano M, Holland SC, Artier J, Burnap RL, Ghirardi M, et al. 2018. Glycogen synthesis and metabolite overflow contribute to energy balancing in cyanobacteria. Cell Reports 23:667−72 doi: 10.1016/j.celrep.2018.03.083 |
| [45] |
Lau CC, Teh KY, Wan Afifudeen CL, Yee W, Aziz A, et al. 2022. Bright as day and dark as night: light-dependant energy for lipid biosynthesis and production in microalgae. World Journal of Microbiology & Biotechnology 38:70 doi: 10.1007/s11274-022-03245-0 |
| [46] |
Yu J, Li Y, Qin Z, Guo S, Li Y, et al. 2020. Plant chloroplast stress response: insights from thiol redox proteomics. Antioxid Redox Signal 33:35−57 doi: 10.1089/ars.2019.7823 |