[1]

Du J, Groover A. 2010. Transcriptional regulation of secondary growth and wood formation. Journal of Integrative Plant Biology 52:17−27

doi: 10.1111/j.1744-7909.2010.00901.x
[2]

Déjardin A, Laurans F, Arnaud D, Breton C, Pilate G, et al. 2010. Wood formation in angiosperms. Comptes Rendus Biologies 333:325−34

doi: 10.1016/j.crvi.2010.01.010
[3]

Li W, Lin YJ, Chen YL, Zhou C, Li S, et al. 2024. Woody plant cell walls: fundamentals and utilization. Molecular Plant 17:112−40

doi: 10.1016/j.molp.2023.12.008
[4]

Purushotham P, Ho R, Zimmer J. 2020. Architecture of a catalytically active homotrimeric plant cellulose synthase complex. Science 369:1089−94

doi: 10.1126/science.abb2978
[5]

Purushotham P, Cho SH, Díaz-Moreno SM, Kumar M, Nixon BT, et al. 2016. A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro. Proceedings of the National Academy of Sciences of the United States of America 113:11360−65

doi: 10.1073/pnas.1606210113
[6]

Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, et al. 1999. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. The Plant Cell 11:2075−86

doi: 10.1105/tpc.11.11.2075
[7]

Song D, Shen J, Li L. 2010. Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytologist 187:777−90

doi: 10.1111/j.1469-8137.2010.03315.x
[8]

Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, et al. 2007. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 104:15566−71

doi: 10.1073/pnas.0706592104
[9]

Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, et al. 2007. Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 104:15572−77

doi: 10.1073/pnas.0706569104
[10]

Zhang X, Dominguez PG, Kumar M, Bygdell J, Miroshnichenko S, et al. 2018. Cellulose synthase stoichiometry in aspen differs from Arabidopsis and Norway spruce. Plant Physiology 177:1096−107

doi: 10.1104/pp.18.00394
[11]

Abbas M, Peszlen I, Shi R, Kim H, Katahira R, et al. 2020. Involvement of CesA4, CesA7-A/B and CesA8-A/B in secondary wall formation in Populus trichocarpa wood. Tree Physiology 40:73−89

doi: 10.1093/treephys/tpz020
[12]

Shi R, Sun YH, Li Q, Heber S, Sederoff R, et al. 2010. Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant and Cell Physiology 51:144−63

doi: 10.1093/pcp/pcp175
[13]

Anterola AM, Lewis NG. 2002. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221−94

doi: 10.1016/S0031-9422(02)00211-X
[14]

Zhang J, Liu Y, Li C, Yin B, Liu X, et al. 2022. PtomtAPX is an autonomous lignification peroxidase during the earliest stage of secondary wall formation in Populus tomentosa Carr. Nature Plants 8:828−39

doi: 10.1038/s41477-022-01181-3
[15]

Liu Y, Cao S, Liu X, Li Y, Wang B, et al. 2021. PtrLAC16 plays a key role in catalyzing lignin polymerization in the xylem cell wall of Populus. International Journal of Biological Macromolecules 188:983−92

doi: 10.1016/j.ijbiomac.2021.08.077
[16]

Sulis DB, Jiang X, Yang C, Marques BM, Matthews ML, et al. 2023. Multiplex CRISPR editing of wood for sustainable fiber production. Science 381:216−21

doi: 10.1126/science.add4514
[17]

Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, et al. 1999. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotechnology 17:808−12

doi: 10.1038/11758
[18]

Zhong R, Morrison WH, Himmelsbach DS, Poole FL, Ye ZH. 2000. Essential role of caffeoyl coenzyme a O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiology 124:563−78

doi: 10.1104/pp.124.2.563
[19]

Bryan AC, Jawdy S, Gunter L, Gjersing E, Sykes R, et al. 2016. Knockdown of a laccase in Populus deltoides confers altered cell wall chemistry and increased sugar release. Plant Biotechnology Journal 14:2010−20

doi: 10.1111/pbi.12560
[20]

Qin S, Fan C, Li X, Li Y, Hu J, et al. 2020. LACCASE14 is required for the deposition of guaiacyl lignin and affects cell wall digestibility in poplar. Biotechnology for Biofuels 13:197

doi: 10.1186/s13068-020-01843-4
[21]

Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, et al. 2002. Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiology 129:145−55

doi: 10.1104/pp.010988
[22]

Zhong R, Ye ZH. 2014. Complexity of the transcriptional network controlling secondary wall biosynthesis. Plant Science 229:193−207

doi: 10.1016/j.plantsci.2014.09.009
[23]

Han X, Zhao Y, Chen Y, Xu J, Jiang C, et al. 2022. Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. Forestry Research 2:9

doi: 10.48130/FR-2022-0009
[24]

Chen K, Tang X, Song M, Guo Y, Liu L, et al. 2021. Functional identification of MdMYB5 involved in secondary cell wall formation in apple. Fruit Research 1:6

doi: 10.48130/FruRes-2021-0006
[25]

Gui J, Luo L, Zhong Y, Sun J, Umezawa T, et al. 2019. Phosphorylation of LTF1, an MYB transcription factor in Populus, acts as a sensory switch regulating lignin biosynthesis in wood cells. Molecular Plant 12:1325−37

doi: 10.1016/j.molp.2019.05.008
[26]

Chen H, Wang JP, Liu H, Li H, Lin YCJ, et al. 2019. Hierarchical transcription factor and chromatin binding network for wood formation in Populus trichocarpa. The Plant Cell 31:602−26

doi: 10.1105/tpc.18.00620
[27]

Li C, Wang X, Ran L, Tian Q, Fan D, et al. 2015. PtoMYB92 is a Transcriptional activator of the lignin biosynthetic pathway during secondary cell wall formation in Populus tomentosa. Plant and Cell Physiology 56:2436−46

doi: 10.1093/pcp/pcv157
[28]

Jiao B, Zhao X, Lu W, Guo L, Luo K. 2019. The R2R3 MYB transcription factor MYB189 negatively regulates secondary cell wall biosynthesis in Populus. Tree Physiology 39:1187−200

doi: 10.1093/treephys/tpz040
[29]

Machida C, Nakagawa A, Kojima S, Takahashi H, Machida Y. 2015. The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis. WIREs Developmental Biology 4:655−71

doi: 10.1002/wdev.196
[30]

Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, et al. 2000. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967−71

doi: 10.1038/35050091
[31]

Xu L, Xu Y, Dong A, Sun Y, Pi L, et al. 2003. Novel As1 and As2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development 130:4097−107

doi: 10.1242/dev.00622
[32]

Husbands AY, Benkovics AH, Nogueira FTS, Lodha M, Timmermans MCP. 2015. The ASYMMETRIC LEAVES complex employs multiple modes of regulation to affect adaxial-abaxial patterning and leaf complexity. The Plant Cell 27:3321−35

doi: 10.1105/tpc.15.00454
[33]

Li H, Xu L, Wang H, Yuan Z, Cao X, et al. 2005. The putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and microRNA165/166 in Arabidopsis leaf development. The Plant Cell 17:2157−71

doi: 10.1105/tpc.105.033449
[34]

Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, et al. 2001. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric Lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128:1771−83

doi: 10.1242/dev.128.10.1771
[35]

Lee N, Hwang DY, Lee HG, Hwang H, Kang HW, et al. 2025. ASYMMETRIC LEAVES1 promotes leaf hyponasty in Arabidopsis by light-mediated auxin signaling. Plant Physiology 197:kiae550

doi: 10.1093/plphys/kiae550
[36]

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30:2725−29

doi: 10.1093/molbev/mst197
[37]

Liu JG, Han X, Yang T, Cui WH, Wu AM, et al. 2019. Genome-wide transcriptional adaptation to salt stress in Populus. BMC Plant Biology 19:367

doi: 10.1186/s12870-019-1952-2
[38]

Liu B, Zhang J, Wang L, Li J, Zheng H, et al. 2014. A survey of Populus PIN-FORMED family genes reveals their diversified expression patterns. Journal of Experimental Botany 65:2437−48

doi: 10.1093/jxb/eru129
[39]

Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols 11:1650−67

doi: 10.1038/nprot.2016.095
[40]

Anders S, Pyl PT, Huber W. 2015. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166−69

doi: 10.1093/bioinformatics/btu638
[41]

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139−40

doi: 10.1093/bioinformatics/btp616
[42]

Yan H, Pei X, Zhang H, Li X, Zhang X, et al. 2021. MYB-mediated regulation of anthocyanin biosynthesis. International Journal of Molecular Sciences 22:3103

doi: 10.3390/ijms22063103
[43]

Stracke R, Werber M, Weisshaar B. 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology 4:447−56

doi: 10.1016/S1369-5266(00)00199-0
[44]

Zinkgraf M, Liu L, Groover A, Filkov V. 2017. Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions. New Phytologist 214:1464−78

doi: 10.1111/nph.14492
[45]

Alber AV, Renault H, Basilio-Lopes A, Bassard JE, Liu Z, et al. 2019. Evolution of coumaroyl conjugate 3-hydroxylases in land plants: lignin biosynthesis and defense. The Plant Journal 99:924−36

doi: 10.1111/tpj.14373
[46]

Li YC, Lin JY, Hsu WH, Kung CT, Dai SY, et al. 2023. OAF is a DAF-like gene that controls ovule development in plants. Communications Biology 6:498

doi: 10.1038/s42003-023-04864-5
[47]

Guan Y, Qin X, Wei C, Feng Y, Cheng Y, et al. 2024. Influence of bagging on fruit quality, incidence of peel browning spots, and lignin content of 'Huangguan' pears. Plants 13:516

doi: 10.3390/plants13040516
[48]

Xiao R, Zhang C, Guo X, Li H, Lu H. 2021. MYB transcription factors and its regulation in secondary cell wall formation and lignin biosynthesis during xylem development. International Journal of Molecular Sciences 22:3560

doi: 10.3390/ijms22073560
[49]

Nakano Y, Yamaguchi M, Endo H, Rejab NA, Ohtani M. 2015. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Frontiers in Plant Science 6:288

doi: 10.3389/fpls.2015.00288
[50]

Bernal M, Krämer U. 2021. Involvement of Arabidopsis multi-copper oxidase-encoding LACCASE12 in root-to-shoot iron partitioning: a novel example of copper-iron crosstalk. Frontiers in Plant Science 12:688318

doi: 10.3389/fpls.2021.688318
[51]

Li Y, Jin F, Wu X, Teixeira da Silva JA, Xiong Y, et al. 2023. Identification and function of miRNA-mRNA interaction pairs during lateral root development of hemi-parasitic Santalum album L. seedlings. Journal of Plant Physiology 280:153866

doi: 10.1016/j.jplph.2022.153866
[52]

Maisto M, Zuzolo D, Tartaglia M, Prigioniero A, Ranauda MA, et al. 2024. Advances in plastic mycoremediation: focus on the isoenzymes of the lignin degradation complex. Science of The Total Environment 948:174554

doi: 10.1016/j.scitotenv.2024.174554
[53]

Wessels B, Seyfferth C, Escamez S, Vain T, Antos K, et al. 2019. An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition. New Phytologist 224:1585−99

doi: 10.1111/nph.15960
[54]

Zhuang Y, Zuo D, Tao Y, Cai H, Li L. 2020. Laccase3-based extracellular domain provides possible positional information for directing Casparian strip formation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 117:15400−02

doi: 10.1073/pnas.2005429117
[55]

Ha CM, Jun JH, Nam HG, Fletcher JC. 2007. BLADE-ON-PETIOLE1 and 2 control Arabidopsis lateral organ fate through regulation of LOB domain and adaxial-abaxial polarity genes. The Plant Cell 19:1809−25

doi: 10.1105/tpc.107.051938
[56]

Song SK, Ryu KH, Kang YH, Song JH, Cho YH, et al. 2011. Cell fate in the Arabidopsis root epidermis is determined by competition between WEREWOLF and CAPRICE. Plant Physiology 157:1196−208

doi: 10.1104/pp.111.185785
[57]

Vosnakis N, Maiden A, Kourmpetli S, Hands P, Sharples D, et al. 2012. A FILAMENTOUS FLOWER orthologue plays a key role in leaf patterning in opium poppy. The Plant Journal 72:662−73

doi: 10.1111/j.1365-313X.2012.05112.x
[58]

Wang S, Chen JG. 2014. Regulation of cell fate determination by single-repeat R3 MYB transcription factors in Arabidopsis. Frontiers in Plant Science 5:133

doi: 10.3389/fpls.2014.00133
[59]

Yordanov YS, Regan S, Busov V. 2010. Members of the LATERAL ORGAN BOUNDARIES DOMAIN transcription factor family are involved in the regulation of secondary growth in Populus. The Plant Cell 22:3662−77

doi: 10.1105/tpc.110.078634
[60]

Kucukoglu M, Nilsson J, Zheng B, Chaabouni S, Nilsson O. 2017. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees. New Phytologist 215:642−57

doi: 10.1111/nph.14631
[61]

Zhao Y, Song X, Zhou H, Wei K, Jiang C, et al. 2019. KNAT2/6b, a class I KNOX gene, impedes xylem differentiation by regulating NAC domain transcription factors in poplar. New Phytologist 225:1531−44

doi: 10.1111/nph.16036
[62]

Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, et al. 2001. The Arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiology 126:643−55

doi: 10.1104/pp.126.2.643
[63]

Hu R, Chi X, Chai G, Kong Y, He G, et al. 2012. Genome-wide identification, evolutionary expansion, and expression profile of homeodomain-leucine zipper gene family in poplar (Populus trichocarpa). PLoS One 7:e31149

doi: 10.1371/journal.pone.0031149
[64]

McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, et al. 2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709−13

doi: 10.1038/35079635
[65]

Robischon M, Du J, Miura E, Groover A. 2011. The Populus Class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems. Plant Physiology 155:1214−25

doi: 10.1104/pp.110.167007
[66]

Du J, Miura E, Robischon M, Martinez C, Groover A. 2011. The Populus Class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems. PLoS One 6:e17458

doi: 10.1371/journal.pone.0017458
[67]

Zhu Y, Song D, Xu P, Sun J, Li L. 2018. A HD-ZIP III gene, PtrHB4, is required for interfascicular cambium development in Populus. Plant Biotechnology Journal 16:808−17

doi: 10.1111/pbi.12830
[68]

Zhu Y, Song D, Sun J, Wang X, Li L. 2013. PtrHB7, a class III HD-zip gene, plays a critical role in regulation of vascular cambium differentiation in Populus. Molecular Plant 6:1331−43

doi: 10.1093/mp/sss164
[69]

Sundell D, Street NR, Kumar M, Mellerowicz EJ, Kucukoglu M, et al. 2017. AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. The Plant Cell 29:1585−604

doi: 10.1105/tpc.17.00153
[70]

Groover AT, Mansfield SD, DiFazio SP, Dupper G, Fontana JR, et al. 2006. The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium. Plant Molecular Biology 61:917−32

doi: 10.1007/s11103-006-0059-y
[71]

Du J, Mansfield SD, Groover AT. 2009. The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth. The Plant Journal 60:1000−14

doi: 10.1111/j.1365-313X.2009.04017.x