[1]

Zhan J, Meyers BC. 2023. Plant small RNAs: their biogenesis, regulatory roles, and functions. Annual Review of Plant Biology 74:21−51

doi: 10.1146/annurev-arplant-070122-035226
[2]

Vaucheret H, Voinnet O. 2024. The plant siRNA landscape. The Plant Cell 36(2):246−75

doi: 10.1093/plcell/koad253
[3]

Rogers K, Chen X. 2013. Biogenesis, turnover, and mode of action of plant microRNAs. The Plant Cell 25(7):2383−99

doi: 10.1105/tpc.113.113159
[4]

Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, et al. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436−39

doi: 10.1126/science.1126088
[5]

Krol J, Loedige I, Filipowicz W. 2010. The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics 11(9):597−610

doi: 10.1038/nrg2843
[6]

Xie F, Jones DC, Wang Q, Sun R, Zhang B. 2015. Small RNA sequencing identifies miRNA roles in ovule and fibre development. Plant Biotechnology Journal 13(3):355−69

doi: 10.1111/pbi.12296
[7]

Farooq M, Mansoor S, Guo H, Imran A, Chee, et al. 2017. Identification and characterization of miRNA transcriptome in asiatic cotton (Gossypium arboreum) using high throughput sequencing. Frontiers in Plant Science 8:969

doi: 10.3389/fpls.2017.00969
[8]

Liu M, Yu H, Zhao G, Huang Q, Lu Y, et al. 2017. Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genomics 18(1):481

doi: 10.1186/s12864-017-3869-1
[9]

Liu M, Yu H, Zhao G, Huang Q, Lu Y, et al. 2018. Identification of drought-responsive microRNAs in tomato using high-throughput sequencing. Functional & Integrative Genomics 18(1):67−78

doi: 10.1007/s10142-017-0575-7
[10]

Ferigolo LF, Vicente MH, Correa JPO, Barrera-Rojas CH, Silva EM, et al. 2023. Gibberellin and miRNA156-targeted SlSBP genes synergistically regulate tomato floral meristem determinacy and ovary patterning. Development 150(21):dev201961

doi: 10.1242/dev.201961
[11]

Wang C, Jogaiah S, Zhang W, Abdelrahman M, Fang JG. 2018. Spatio-temporal expression of miRNA159 family members and their GAMYB target gene during the modulation of gibberellin-induced grapevine parthenocarpy. Journal of Experimental Botany 69(15):3639−50

doi: 10.1093/jxb/ery172
[12]

Li D, Mou W, Luo Z, Li L, Limwachiranon J, et al. 2016. Developmental and stress regulation on expression of a novel miRNA, Fan-miR73, and its target ABI5 in strawberry. Scientific Reports 6:28385

doi: 10.1038/srep28385
[13]

Meyers BC, Axtell MJ. 2019. MicroRNAs in plants: key findings from the early years. The Plant Cell 31(6):1206−07

doi: 10.1105/tpc.19.00310
[14]

Azad MF, Dawar P, Esim N, Rock CD. 2023. Role of miRNAs in sucrose stress response, reactive oxygen species, and anthocyanin biosynthesis in Arabidopsis thaliana. Frontiers in Plant Science 14:1278320

doi: 10.3389/fpls.2023.1278320
[15]

Qu D, Yan F, Meng R, Jiang X, Yang H, et al. 2016. Identification of MicroRNAs and their targets associated with fruit-bagging and subsequent sunlight re-exposure in the "Granny Smith" apple exocarp using high-throughput sequencing. Frontiers in Plant Science 7:27

doi: 10.3389/fpls.2016.00027
[16]

Zhao F, Wang C, Han J, Zhu X, Li X, et al. 2017. Characterization of miRNAs responsive to exogenous ethylene in grapevine berries at whole genome level. Functional & Integrative Genomics 17(2-3):213−35

doi: 10.1007/s10142-016-0514-z
[17]

Guo DL, Li Q, Lv WQ, Zhang GH, Yu YH. 2018. MicroRNA profiling analysis of developing berries for 'Kyoho' and its early-ripening mutant during berry ripening. BMC Plant Biology 18(1):285

doi: 10.1186/s12870-018-1516-x
[18]

Zhu H, Xia R, Zhao B, An Y, Dardick CD, et al. 2012. Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC Plant Biology 12:149

doi: 10.1186/1471-2229-12-149
[19]

Zhang Y, Bai Y, Han J, Chen Ming, Kayesh E, et al. 2013. Bioinformatics prediction of miRNAs in the Prunus persica genome with validation of their precise sequences by miR-RACE. Journal of Plant Physiology 170(1):80−92

doi: 10.1016/j.jplph.2012.08.021
[20]

Saminathan T, Bodunrin A, Singh NV, Devarajan R, Nimmakayala P, et al. 2016. Genome-wide identification of microRNAs in pomegranate (Punica granatum L.) by high-throughput sequencing BMC Plant Biology 16(1):122

doi: 10.1186/s12870-016-0807-3
[21]

Xin C, Liu W, Lin Q, Zhang X, Cui P, et al. 2015. Profiling microRNA expression during multi-staged date palm (Phoenix dactylifera L.) fruit development. Genomics 105(4):242−51

doi: 10.1016/j.ygeno.2015.01.004
[22]

Wu J, Zheng S, Feng G, Yi H. 2016. Comparative analysis of miRNAs and their target transcripts between a spontaneous late-ripening sweet orange mutant and its wild-type using small RNA and degradome sequencing. Frontiers in Plant Science 7:1416

doi: 10.3389/fpls.2016.01416
[23]

Hou Y, Zhai L, Li X, Xue Y, Wang J, et al. 2017. Comparative analysis of fruit ripening-related miRNAs and their targets in blueberry using small RNA and degradome sequencing. International Journal of Molecular Sciences 18(12):2767

doi: 10.3390/ijms18122767
[24]

Lowenstein DM, Minor ES. 2016. Diversity in flowering plants and their characteristics: integrating humans as a driver of urban floral resources. Urban Ecosystems 19:1735−48

doi: 10.1007/s11252-016-0563-z
[25]

Tani E, Tsaballa A, Stedel C, Kalloniati C, Papaefthimiou D, et al. 2011. The study of a SPATULA-like bHLH transcription factor expressed during peach (Prunus persica) fruit development. Plant Physiology and Biochemistry 49(6):654−63

doi: 10.1016/j.plaphy.2011.01.020
[26]

Jung S, Staton M, Lee T, Blenda A, Svancara R, et al. 2008. GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Research 36:D1034−D1040

doi: 10.1093/nar/gkm803
[27]

Veerappan K, Natarajan S, Chung H, Park J. 2021. Molecular insights of fruit quality traits in peaches, Prunus persica. Plants 10(10):2191

doi: 10.3390/plants10102191
[28]

Esmaeili F, Shiran B, Fallahi H, Mirakhorli N, Budak H, et al. 2017. In silico search and biological validation of microRNAs related to drought response in peach and almond. Functional & Integrative Genomics 17:189−201

doi: 10.1007/s10142-016-0488-x
[29]

Gao Z, Luo X, Shi T, Cai B, Zhang Z, et al. 2012. Identification and validation of potential conserved microRNAs and their targets in peach (Prunus persica). Molecules and Cells 34(3):239−50

doi: 10.1007/s10059-012-0004-7
[30]

Luo X, Gao Z, Shi T, Cheng Z, Zhang Z, et al. 2013. Identification of miRNAs and their target genes in peach (Prunus persica L.) using high-throughput sequencing and degradome analysis. PLoS One 8:e79090

doi: 10.1371/journal.pone.0079090
[31]

Quan W, Liu B, Wang Y. 2021. Fast and SNP-aware short read alignment with SALT. BMC Bioinformatics 22(Suppl 9):172

doi: 10.1186/s12859-021-04088-6
[32]

Wen M, Shen Y, Shi S, Tang T. 2012. miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformatics 13:140

doi: 10.1186/1471-2105-13-140
[33]

Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. 2012. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research 40(1):37−52

doi: 10.1093/nar/gkr688
[34]

Tang Y, Ghosal S, Roy A. 2007. Nonparametric bayesian estimation of positive false discovery rates. Biometrics 63(4):1126−34

doi: 10.1111/j.1541-0420.2007.00819.x
[35]

Addo-Quaye C, Miller W, Axtell MJ. 2009. CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25(1):130−31

doi: 10.1093/bioinformatics/btn604
[36]

Kohl M, Wiese S, Warscheid B. 2011. Cytoscape: software for visualization and analysis of biological networks. In Data Mining in Proteomics, eds Hamacher M, Eisenacher M, Stephan C. US: Humana Press. Volume 696. pp. 291−303. doi: 10.1007/978-1-60761-987-1_18

[37]

Shangguan L, Song C, Han J, Leng X, Kibet KN, et al. 2014. Characterization of regulatory mechanism of Poncirus trifoliata microRNAs on their target genes with an integrated strategy of newly developed PPM-RACE and RLM-RACE. Gene 535(1):42−52

doi: 10.1016/j.gene.2013.10.069
[38]

Tiwari B, Habermann K, Arif MA, Top O, Frank W. 2021. Identification of small RNAs during high light acclimation in Arabidopsis thaliana. Frontiers in Plant Science 12:656657

doi: 10.3389/fpls.2021.656657
[39]

Varkonyi-Gasic E. 2017. Stem-loop qRT-PCR for the detection of plant microRNAs. In Plant Epigenetics, ed. Kovalchuk I. Boston, MA: Humana Press.Volume 1456. pp. 163−75. doi: 10.1007/978-1-4899-7708-3_13

[40]

Pasquinelli AE. 2012. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nature Review Genetics 13(4):271−82

doi: 10.1038/nrg3162
[41]

Dai X, Lu Q, Wang J, Wang L, Xiang F, et al. 2021. MiR160 and its target genes ARF10, ARF16 and ARF17 modulate hypocotyl elongation in a light, BRZ, or PAC-dependent manner in Arabidopsis: miR160 promotes hypocotyl elongation. Plant Science 303:110686

doi: 10.1016/j.plantsci.2020.110686
[42]

de Sousa Cardoso TC, Alves TC, Caneschi CM, dos Reis Gomes Santana D, Fernandes-Brum CN, et al. 2018. New insights into tomato microRNAs. Science Reports 8(1):16069

doi: 10.1038/s41598-018-34202-3
[43]

Li BJ, Bao RX, Shi YN, Grierson D, Chen KS. 2024. Auxin response factors: important keys for understanding regulatory mechanisms of fleshy fruit development and ripening. Horticulture Research 11(10):uhae209

doi: 10.1093/hr/uhae209
[44]

Shi M, Hu X, Wei Y, Hou X, Yuan X, et al. 2017. Genome-wide profiling of small RNAs and degradome revealed conserved regulations of miRNAs on auxin-responsive genes during fruit enlargement in peaches. International Journal of Molecular Science 18(12):2599

doi: 10.3390/ijms18122599
[45]

Zimmerman K, Pegler JL, Oultram JMJ, Collings DA, Wang MB, et al. 2024. Molecular manipulation of the miR160/AUXIN RESPONSE FACTOR expression module impacts root development in Arabidopsis thaliana. Genes 15(8):1042

doi: 10.3390/genes15081042
[46]

Wang Y, Li W, Chang H, Zhou J, Luo Y, et al. 2020. SRNAome and transcriptome analysis provide insight into strawberry fruit ripening. Genomics 112(3):2369−78

doi: 10.1016/j.ygeno.2020.01.008
[47]

Tang J, Chu C. 2017. MicroRNAs in crop improvement: fine-tuners for complex traits. Nature Plants 3:17077

doi: 10.1038/nplants.2017.77
[48]

Samad AFA, Sajad M, Nazaruddin N, Fauzi IA, Murad AM, et al. 2017. MicroRNA and transcription factor: key players in plant regulatory network. Frontiers in Plant Science 8:565

doi: 10.3389/fpls.2017.00565
[49]

Zhang H, Yin L, Wang H, Wang G, Ma X, et al. 2017. Genome-wide identification of Hami melon miRNAs with putative roles during fruit development. PLoS One 12(7):e0180600

doi: 10.1371/journal.pone.0180600
[50]

Cui J, You C, Chen X. 2017. The evolution of microRNAs in plants. Current Opinion in Plant Biology 35:61−67

doi: 10.1016/j.pbi.2016.11.006
[51]

Sun YH, Lu S, Shi R, Chiang VL. 2011. Computational prediction of plant miRNA targets. In RNAi and Plant Gene Function Analysis, eds Kodama H, Komamine A. US: Humana Press. Volume 744. pp. 175−86. doi: 10.1007/978-1-61779-123-9_12

[52]

Yadav A, Kumar S, Verma R, Lata C, Sanyal I, et al. 2021. microRNA 166: an evolutionarily conserved stress biomarker in land plants targeting HD-ZIP family. Physiology and Molecular Biology of Plants 27:2471−85

doi: 10.1007/s12298-021-01096-x
[53]

Jia X, Ding N, Fan W, Yan J, Gu Y, et al. 2015. Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic. Plant Science 233:11−21

doi: 10.1016/j.plantsci.2014.12.020
[54]

Ma L, Zhao Y, Chen M, Li Y, Shen Z, et al. 2023. The microRNA ppe-miR393 mediates auxin-induced peach fruit softening by promoting ethylene production. Plant Physiology 192(2):1638−55

doi: 10.1093/plphys/kiad182
[55]

Gaddam SR, Sharma A, Bhatia C, Trivedi PK. 2024. A network comprising ELONGATED HYPOCOTYL 5, microRNA397b, and auxin-associated factors regulates root hair growth in Arabidopsis. Plant Physiology 196(2):1460−74

doi: 10.1093/plphys/kiae301
[56]

Jiang J, Zhu H, Li N, Batley J, Wang Y. 2022. The miR393-target module regulates plant development and responses to biotic and abiotic stresses. International Journal of Molecular Sciences 23(16):9477

doi: 10.3390/ijms23169477
[57]

Wang J, Li R, Chen Y, Wang X, Shi Q, et al. 2023. Expressing a Short Tandem Target Mimic (STTM) of miR164b/e-3p enhances poplar leaf serration by co-regulating the miR164-NAC module. Plant Physiology and Biochemistry 201:107790

doi: 10.1016/j.plaphy.2023.107790
[58]

Karidas P, Challa KR, Nath U. 2015. The tarani mutation alters surface curvature in Arabidopsis leaves by perturbing the patterns of surface expansion and cell division. Journal of Experimental Botany 66(7):2107−22

doi: 10.1093/jxb/erv015
[59]

Liu X, Guo LX, Jin LF, Liu YZ, Liu T, et al. 2016. Identification and transcript profiles of citrus growth-regulating factor genes involved in the regulation of leaf and fruit development. Molecular Biology Reports 43(10):1059−67

doi: 10.1007/s11033-016-4048-1
[60]

Chung MY, Nath UK, Vrebalov J, Gapper N, Lee JM, et al. 2020. Ectopic expression of miRNA172 in tomato (Solanum lycopersicum) reveals novel function in fruit development through regulation of an AP2 transcription factor. BMC Plant Biology 20(1):283

doi: 10.1186/s12870-020-02489-y