| [1] |
Liu K, Zhang R, Gao Y, Zhang H, Wen J, et al. 2024. Present situation analysis and development countermeasures of grape industry in China. China Fruits 7:132−38 doi: 10.16626/j.cnki.issn1000-8047.2024.07.020 |
| [2] |
Zeng X, Lin J, Chen L, Zhang C, Luo S, et al. 2024. A study of polysaccharides content and antioxidant activities in vitro of different varieties of grape. Sichuan University of Arts and Science Journal 34(2):38−43 doi: 10.3969/j.issn.1674-5248.2024.02.006 |
| [3] |
Tian Y, Chen G, Li J, Xiang X, Liu Y, et al. 2018. Present development of grape industry in the world. Chinese Journal of Tropical Agriculture 38(6):96−101+105 doi: 10.12008/j.issn.1009-2196.2018.06.020 |
| [4] |
Xu F, Fu D, Wang Q, et al. 2018. Nondestructive detection of sugar content and acidity in red globe table grapes using visible near infrared spectroscopy based on Monte Carlo cross validation-competitive adaptive reweighted sampling random forest (MCCV CARS RF). Food Science 39(8):149−54 doi: 10.7506/spkx1002-6630-201808024 |
| [5] |
Guo W, Fang L, Liu D, Wang Z. 2015. Determination of soluble solids content and firmness of pears during ripening by using dielectric spectroscopy. Computers and Electronics in Agriculture 117:226−33 doi: 10.1016/j.compag.2015.08.012 |
| [6] |
Xu H, Li Q. 2017. Calibration model transfer between visible/NIR spectrometers in sugar content on-line detection of crown pears. Transactions of the Chinese Society for Agricultural Machinery 48(9):312−17 doi: 10.6041/j.issn.1000-1298.2017.09.039 |
| [7] |
Wen J, Xu G, Zhang A, Ma W, Jin G. 2024. Emerging technologies for rapid non-destructive testing of grape quality: a review. Journal of Food Composition and Analysis 133:106446 doi: 10.1016/j.jfca.2024.106446 |
| [8] |
Wu M, Cai H, Cui X, Wei Z, Ke H. 2020. Fast inspection of fruits using nuclear magnetic resonance spectroscopy. Journal of the Chinese Chemical Society 67(10):1794−99 doi: 10.1002/jccs.201900458 |
| [9] |
Zhou X, Yang J, Su Y, He K, Fang Y, et al. 2024. Aggregation and assessment of grape quality parameters with visible-near-infrared spectroscopy: Introducing a novel quantitative index. Postharvest Biology and Technology 218:113131 doi: 10.1016/j.postharvbio.2024.113131 |
| [10] |
Ping F, Yang J, Zhou X, Su Y, Ju Y, et al. 2023. Quality assessment and ripeness prediction of table grapes using visible–near-infrared spectroscopy. Foods 12(12):2364 doi: 10.3390/foods12122364 |
| [11] |
Gao S, Wang Q, Shi X, Li Q. 2021. Design and test of portable red globe grape extraction multi-quality visible/near infrared detector. Transactions of the Chinese Society for Agricultural Machinery 52(2):308−19 |
| [12] |
Xiao H, Sun K, Tu K, Pan L. 2019. Development and application of a specialized portable visible and near-infrared instrument for grape quality detection. Food Science 40(8):300−5 doi: 10.7506/spkx1002-6630-20171124-305 |
| [13] |
Urraca R, Sanz-garcia A, Tardaguila J, Diago MP. 2016. Estimation of total soluble solids in grape berries using a hand-held NIR spectrometer under field conditions. Journal of The Science of Food and Agriculture 96(9):3007−3016 doi: 10.1002/jsfa.7470 |
| [14] |
Lu B, Liu N, Wang X, Hu C, Tang X. 2020. A feasibility quantitative analysis of NIR spectroscopy coupled Si-PLS to predict coco-peat available nitrogen from rapid measurements Computers and electronics in agriculture 173: 105410 |
| [15] |
Li Y, Li F, Yang X, Guo L, Huang F, et al. 2018. Quantitative analysis of glycated albumin in serum based on ATR-FTIR spectrum combined with SiPLS and SVM. Spectrochimica Acta Part A: Molecular and Biomolecular Soectrocopy 201:249−57 doi: 10.1016/j.saa.2018.05.022 |
| [16] |
Duarte LM, Paschoal D, Izumi CMS, Dolzan MD, Alves VR, et al. 2017. Simultaneous determination of aspartame, cyclamate, saccharin and acesulfame-K in powder tabletop sweeteners by FT-Raman spectroscopy associated with the multivariate calibration: PLS, iPLS and SiPLS models were compared. Food Research International 99:106−14 doi: 10.1016/j.foodres.2017.05.006 |
| [17] |
Nørgaard L, Saudland A, Wagner J, Nielsen JP, Munck L, et al. 2000. Interval partial least-squares regression(iPLS): a comparative chemometric studywith an example from near-infrared spectroscopy. Applied Spectroscopyy 54(3):413−19 doi: 10.1366/0003702001949500 |
| [18] |
Liu X, Xue L, Lu X, Zhang P, Chen S, et al. 2016. Non-destructive testing of soluble solids and total acidity in blueberry by near-infrared diffuse reflectance spectroscope. Journal of Food Science and Biotechnology 34(7):752−56 doi: 10.3969/j.issn.1673-1689.2016.07.014 |
| [19] |
Puertas G, Vázquez M. 2019. Fraud detection in hen housing system declared on the eggs' label: an accuracy method based on UV-VIS-NIR spectroscopy and chemometrics. Food Chemistry 288:8−14 doi: 10.1016/j.foodchem.2019.02.106 |
| [20] |
Lu B, Liu N, Li H, Yang K, Hu C, et al. 2019. Quantitative determination and characteristic wavelength selection of available nitrogen in coco-peat by NIR spectroscopy. Soil & Tillage Research 191:266−74 doi: 10.1016/j.still.2019.04.015 |
| [21] |
Adesokan M, Alamu EO, Fawole S, Maziya-Dixon B. 2023. Prediction of functional characteristics of gari(cassava flakes) using near-infrared reflectance spectrometry. Frontiers in Chemistry 11:1156718 doi: 10.3389/fchem.2023.1156718 |
| [22] |
Caramês ETS, Alamar PD, Pallone JAL. 2019. Detection and identification of acaipulp adulteration by NIR and MIR as an alternative technique: control charts and classification models. Food Research International 123:704−11 doi: 10.1016/j.foodres.2019.06.006 |
| [23] |
Qiao L, Tang X, Dong J. 2017. A feasibility quantification study of total volatile basic nitrogen (TVB-N) content in duck meat for freshness evaluation. Food Chemistry 237:1179−85 doi: 10.1016/j.foodchem.2017.06.031 |
| [24] |
Guo Z, Wang M, Wu J, Tao F, Chen Q, et al. 2019. Quantitative assessment of zearalenone in maize using multivariate algorithms coupled to Ramon spectroscopy. Food Chemistry 286:282−88 doi: 10.1016/j.foodchem.2019.02.020 |
| [25] |
Eom YH, Chung Y, Park M, Hong SB, Kim MS, et al. 2021. Deep learning-based prediction method on performance change of air source heat pump system under frosting conditions. Energy 228:120542 doi: 10.1016/j.energy.2021.120542 |
| [26] |
Li H, Jiang D, Cao J, Zhang D. 2020. Near-infrared spectroscopy coupled chemometric algorithms for rapid origin identification and lipid content detection of Pinus koraiensis seeds. Sensors 20:4905 doi: 10.3390/s20174905 |
| [27] |
Huang Z, Sha S, Rong Z, Chen J, He Q, et al. 2013. Feasibility study of near infrared spectroscopy with variable selection for non-destructive determination of quality parameters in shell-intact cottonseed. Industrial Crops and Products 43:654−60 doi: 10.1016/j.indcrop.2012.08.015 |
| [28] |
Li Y, Tang X, Shen Z, Dong . 2019. Prediction of total volatile basic nitrogen (TVB-N) content of chilled beef for freshness by using viscoelasticity based on airflow and laser technique. Food Chemistry 287:126−32 doi: 10.1016/j.foodchem.2019.01.213 |
| [29] |
Cai J, Huang C, Ma L, Zhai L, Guo Z. 2023. Hand-held visible/near infrared nondestructive detection system for soluble solid content inMandarin by 1D-CNN. Spectroscopy and Spectral Analysis 43(9):2792−98 |
| [30] |
Lin J, Meng Q, Wu Z, Chang H, Ni C, et al. 2024. Fruit soluble solids content non-destructive detection based on visible/near infrared hyperspectral imaging in mango. Journal of Fruit Science 41(1):122−32 doi: 10.13925/j.cnki.gsxb.20230269 |