[1]

Chen L, Msigwa G, Yang M, Osman AI, Fawzy S, et al. 2022. Strategies to achieve a carbon neutral society: a review. Environmental Chemistry Letters 20(4):2277−310

doi: 10.1007/s10311-022-01435-8
[2]

Liu P, Han X. 2022. Comparative analysis on similarities and differences of hydrogen energy development in the World's top 4 largest economies: a novel framework. International Journal of Hydrogen Energy 47(16):9485−503

doi: 10.1016/j.ijhydene.2022.01.038
[3]

Hermesmann M, Müller TE. 2022. Green, turquoise, blue, or grey? Environmentally friendly hydrogen production in transforming energy systems. Progress in Energy and Combustion Science 90:100996

doi: 10.1016/j.pecs.2022.100996
[4]

Üster H, Dilaveroğlu Ş. 2014. Optimization for design and operation of natural gas transmission networks. Applied Energy 133:56−69

doi: 10.1016/j.apenergy.2014.06.042
[5]

Wen K, Qiao D, Nie C, Lu Y, Wen F, et al. 2023. Multi-period supply and demand balance of large-scale and complex natural gas pipeline network: Economy and environment. Energy 264:126104

doi: 10.1016/j.energy.2022.126104
[6]

Xie P, Wu Y, Li C, Jia W, Zhang H, et al. 2021. Research progress on pipeline transportation technology of hydrogen-mixed natural gas. Oil & Gas Storage and Transportation 40(4):361−70

[7]

Faye O, Szpunar J, Eduok U. 2022. A critical review on the current technologies for the generation, storage, and transportation of hydrogen. International Journal of Hydrogen Energy 47(29):13771−802

doi: 10.1016/j.ijhydene.2022.02.112
[8]

Haeseldonckx D, D'haeseleer W. 2007. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure. International Journal of Hydrogen Energy 32(10−11):1381−86

doi: 10.1016/j.ijhydene.2006.10.018
[9]

Zhou D, Wang C, Yan S, Yan Y, Guo Y, et al. 2022. Dynamic modeling and characteristic analysis of natural gas network with hydrogen injections. International Journal of Hydrogen Energy 47(78):33209−23

doi: 10.1016/j.ijhydene.2022.07.246
[10]

Galyas AB, Kis L, Tihanyi L, Szunyog I, Vadaszi M, et al. 2023. Effect of hydrogen blending on the energy capacity of natural gas transmission networks. International Journal of Hydrogen Energy 48(39):14795−807

doi: 10.1016/j.ijhydene.2022.12.198
[11]

Li F, Dong S, Chen L, Zhu X, Han Z. 2023. Key safety technologies and advances in long-distance pipeline transportation of hydrogen blended natural gas. Mechanics in Engineering 45(2):230−44

doi: 10.6052/1000-0879-22-579
[12]

Zhou XL, Wu YG. 2019. Study on Safety Design of gas-oil Pipeline Transportation and its Importance. Engineering Construction 2(1):30−31

doi: 10.33142/ec.v2i1.85
[13]

Hernández-Rodríguez MAL, Martínez-Delgado D, González R, Pérez Unzueta A, Mercado-Solís RD, et al. 2007. Corrosive wear failure analysis in a natural gas pipeline. Wear 263(1−6):567−71

doi: 10.1016/j.wear.2007.01.123
[14]

Bedairi B, Cronin D, Hosseini A, Plumtree A. 2012. Failure prediction for Crack-in-Corrosion defects in natural gas transmission pipelines. International Journal of Pressure Vessels and Piping 96:90−99

doi: 10.1016/j.ijpvp.2012.06.002
[15]

Manfredi C, Otegui JL. 2002. Failures by SCC in buried pipelines. Engineering Failure Analysis 9(5):495−509

doi: 10.1016/S1350-6307(01)00032-2
[16]

Liang J, Li YX, Liu CW, Zhu JL, Wang SX, et al. 2019. Experimental study on leakage characteristics of buried gas pipelines. CIESC Journal 70(4):1635−43

[17]

Bu F, Chen S, Liu Y, Guan B, Wang X, et al. 2022. CFD analysis and calculation models establishment of leakage of natural gas pipeline considering real buried environment. Energy Reports 8:3789−808

doi: 10.1016/j.egyr.2022.03.007
[18]

Zhu J, Pan J, Zhang Y, Li Y, Li H, et al. 2023. Leakage and diffusion behavior of a buried pipeline of hydrogen-blended natural gas. International Journal of Hydrogen Energy 48(30):11592−610

doi: 10.1016/j.ijhydene.2022.10.185
[19]

Houssin-Agbomson D, Blanchetière G, McCollum D, Saint-Macary C, Mendes RF, et al. 2018. Consequences of a 12-mm diameter high pressure gas release on a buried pipeline. Experimental setup and results. Journal of Loss Prevention in the Process Industries 54:183−89

doi: 10.1016/j.jlp.2018.03.016
[20]

Ren L, Ni Y, Liu Q, Chen J. 2022. Experimental and numerical prediction model for the dangerous radius of natural gas leakage in soil. ACS Omega 7(35):30879−93

doi: 10.1021/acsomega.2c02545
[21]

Ji H, Guo J, Zhang G, Yang K, Jiang J, et al. 2023. Multi-factor coupling analysis of porous leakage in underwater gas pipelines. Processes 11(4):1259

doi: 10.3390/pr11041259
[22]

Zhu J, Zhang Y, Liu S, Peng M, Li Y. 2020. Experimental research on natural gas leakage underwater and burning flame on the water surface. Process Safety and Environmental Protection 139:161−70

doi: 10.1016/j.psep.2020.03.038
[23]

Pontiggia M, Derudi M, Alba M, Scaioni M, Rota R. 2010. Hazardous gas releases in urban areas: Assessment of consequences through CFD modelling. Journal of Hazardous Materials 176(1−3):589−96

doi: 10.1016/j.jhazmat.2009.11.070
[24]

Fei XL. 1989. Advanced fluid mechanics. China: Xi'an Jiao Tong University Press

[25]

Pereira TWC, Marques FB, de Assis Ressel Pereira F, da Cunha Ribeiro D, Rocha SMS. 2016. The influence of the fabric filter layout of in a flow mass filtrate. Journal of Cleaner Production 111:117−24

doi: 10.1016/j.jclepro.2015.09.070
[26]

Lu J, Xu S, Deng J, Wu W, Wu H, et al. 2016. Numerical prediction of temperature field for cargo containment system (CCS) of LNG carriers during pre-cooling operations. Journal of Natural Gas Science and Engineering 29:382−91

doi: 10.1016/j.jngse.2016.01.009
[27]

Wang X, Tan Y, Zhang T, Xiao R, Yu K, et al. 2021. Numerical study on the diffusion process of pinhole leakage of natural gas from underground pipelines to the soil. Journal of Natural Gas Science Engineering 87:103792

doi: 10.1016/j.jngse.2020.103792
[28]

Hossain MS, Hossain MI, Pramanik S, Ahamed DJU. 2017. Analyzing the turbulent flow characteristics by utilizing k- $ \epsilon $ turbulence model. European Journal of Engineering Technology Research 2(11):28−34

doi: 10.24018/ejeng.2017.2.11.510
[29]

Lim DC, Al-Kayiem HH, Kurnia JC. 2018. Comparison of different turbulence models in pipe flow of various Reynolds numbers. AIP Conference Proceedings 2035:020005

doi: 10.1063/1.5075553
[30]

Tang JP. 2016. Ansys fluent 16.0 super learning manual. China: People's Posts Telecommunications Publishing House

[31]

Bu F, Liu Y, Chen S, Wu J, Guan B, et al. 2022. Real scenario analysis of buried natural gas pipeline leakage based on soil-atmosphere coupling. International Journal of Pressure Vessels and Piping 199:104713

doi: 10.1016/j.ijpvp.2022.104713
[32]

Fuller EN, Schettler PD, Giddings JC. 2002. New method for prediction of binary gas-phase diffusion coefficients. Industrial & Engineering Chemistry 58(5):18−27

[33]

Li X, Chen G, Zhu H, Xu C. 2018. Gas dispersion and deflagration above sea from subsea release and its impact on offshore platform. Ocean Engineering 163:157−68

doi: 10.1016/j.oceaneng.2018.05.059
[34]

Cassano K, Pierro A, Froio G, Perini R, Farinelli P, et al. 2023. High-pressure gas release from subsea pipelines: Multiphase modelling and CFD simulation for consequences analysis in risk assessment. Journal of Loss Prevention in the Process Industries 81:104962

doi: 10.1016/j.jlp.2022.104962
[35]

Wardle KE, Weller HG. 2013. Hybrid multiphase CFD solver for coupled dispersed/segregated flows in liquid-liquid extraction. International Journal of Chemical Engineering 2013(1):128936

[36]

Zhang Y, Zhu J, Peng Y, Pan J, Li Y. 2020. Experimental research of flow rate and diffusion behavior of nature gas leakage underwater. Journal of Loss Prevention in the Process Industries 65:104119

doi: 10.1016/j.jlp.2020.104119
[37]

Peng X, Tang F, Delichatsios MA, Wang Q. 2024. Experimental study on offshore fires in cross air flow above water induced by the underwater release of natural gas. Proceedings of the Combustion Institute 40(1-4):105397

doi: 10.1016/j.proci.2024.105397
[38]

Shen SL, Xu YS. 2011. Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Canadian Geotechnical Journal 48(9):1378−92

doi: 10.1139/t11-049
[39]

Gallage C, Pathmanathan R, Kodikara J. 2011. Effect of soil parameter uncertainty on seismic response of buried segmented pipeline. 2011 of Conference proceedings of the Proceedings of the First International Conference-GEOMAT2011 on Geotechnique, Construction Materials and Environment. The GEOMATE International Society

[40]

Marshall AM, Klar A, Mair RJ. 2010. Tunneling beneath buried pipes: View of soil strain and its effect on pipeline behavior. Journal of Geotechnical and Geoenvironmental Engineering 136(12):1664−72

doi: 10.1061/(ASCE)GT.1943-5606.0000390
[41]

Liu C, An J, Xie C, Wu H, Zhang Z. 2024. Numerical simulation-based pinhole leakage characteristics and hazard boundaries of buried natural gas risers. Process Safety and Environmental Protection 184:462−76

doi: 10.1016/j.psep.2024.02.011
[42]

Liu C, Liao Y, Liang J, Cui Z, Li Y. 2021. Quantifying methane release and dispersion estimations for buried natural gas pipeline leakages. Process Safety and Environmental Protection 146:552−63

doi: 10.1016/j.psep.2020.11.031
[43]

Zeng F, Jiang Z, Zheng D, Si M, Wang Y. 2023. Study on numerical simulation of leakage and diffusion law of parallel buried gas pipelines in tunnels. Process Safety and Environmental Protection 177:258−77

doi: 10.1016/j.psep.2023.06.057
[44]

Zhang B, Kang R, Zhu H, Yuan Q, Gong F, et al. 2024. Study of multisource leakage diffusion and explosion risk of underground natural gas pipelines. Journal of Pipeline Systems Engineering and Practice 15(1):04023056

doi: 10.1061/JPSEA2.PSENG-1499
[45]

Bezaatpour J, Fatehifar E, Rasoulzadeh A. 2020. CFD investigation of natural gas leakage and propagation from buried pipeline for anisotropic and partially saturated multilayer soil. Journal of Cleaner Production 277:123940

doi: 10.1016/j.jclepro.2020.123940
[46]

Bu F, Liu Y, Liu Y, Xu Z, Chen S, et al. 2021. Leakage diffusion characteristics and harmful boundary analysis of buried natural gas pipeline under multiple working conditions. Journal of Natural Gas Science and Engineering 94:104047

doi: 10.1016/j.jngse.2021.104047
[47]

Zhou Z, Zhang J, Huang X, Zhang J, Guo X. 2020. Trend of soil temperature during pipeline leakage of high-pressure natural gas: Experimental and numerical study. Measurement 153:107440

doi: 10.1016/j.measurement.2019.107440
[48]

Liu X, Wang Y, Liang Y, Li J. 2024. CFD analysis of leakage and diffusion characteristics in the buried hydrogen-blended natural gas pipeline. International Journal of Hydrogen Energy 60:354−68

doi: 10.1016/j.ijhydene.2024.02.092
[49]

Li J, Xie B, Gong L. 2024. Numerical research on leakage characteristics of pure hydrogen/hydrogen-blended natural gas in medium- and low-pressure buried pipelines. Energies 17(12):2951

doi: 10.3390/en17122951
[50]

Wang L, Chen J, Ma T, Ma R, Bao Y, et al. 2024. Numerical study of leakage characteristics of hydrogen-blended natural gas in buried pipelines. International Journal of Hydrogen Energy 49:1166−79

doi: 10.1016/j.ijhydene.2023.07.293
[51]

Lu H, Guo B, Chen X, Yao J, Liu B. 2024. Numerical investigation on leakage and diffusion characteristics of buried hydrogen-blended natural gas pipelines. International Journal of Hydrogen Energy 59:1491−506

doi: 10.1016/j.ijhydene.2024.02.075
[52]

Wu L, Qiao L, Fan J, Wen J, Zhang Y, et al. 2024. Investigation on natural gas leakage and diffusion characteristics based on CFD. Gas Science and Engineering 123:205238

doi: 10.1016/j.jgsce.2024.205238
[53]

Han WH, Zhou J. 2015. Reliability analysis of corroded subsea pipeline. Acta Petrolei Sinica 36(4):516−20

doi: 10.7623/syxb201504014
[54]

Chen BQ, Zhang X, Guedes Soares C. 2022. The effect of general and localized corrosions on the collapse pressure of subsea pipelines. Ocean Engineering 247:110719

doi: 10.1016/j.oceaneng.2022.110719
[55]

Hasan S, Sweet L, Hults J, Valbuena G, Singh B. 2018. Corrosion risk-based subsea pipeline design. International Journal of Pressure Vessels and Piping 159:1−14

doi: 10.1016/j.ijpvp.2017.10.003
[56]

Choi KH, Lee CS, Ryu DM, Koo BY, Kim MH, et al. 2016. Comparison of computational and analytical methods for evaluation of failure pressure of subsea pipelines containing internal and external corrosions. Journal of Marine Science and Technology 21(3):369−84

doi: 10.1007/s00773-015-0359-5
[57]

Ellethy AM, Shehata AS, Shehata AI, Mehanna A. 2021. Modelling and assessment of accidental gas release from damaged subsea pipelines. International Journal of Environmental Science and Development 12(6):162−68

doi: 10.18178/ijesd.2021.12.6.1335
[58]

Wang H, Jia Y, Liu X, Liu J, Wang K, et al. 2024. Study on the fountain effect of the bubble plume formed by submarine gas pipeline leakage. Frontiers in Marine Science 11:1402784

doi: 10.3389/fmars.2024.1402784
[59]

Yang M, Jiang R, Wu X, Hu Z. 2023. Numerical estimation of gas release and dispersion from a submarine pipeline. Processes 11(4):1076

doi: 10.3390/pr11041076
[60]

Li Y, Hou L, Yu Q, Chai C, Xiao K. 2022. Simulation study of leakage and diffusion of shallow subsea natural gas pipeline. Journal of Petrochemical Universities 35(2):74−80

doi: 10.3969/j.issn.1006-396X.2022.02.012
[61]

Wang S, Li Y, Liu C, Liang J, Li A, et al. 2020. Numerical simulation on leakage and diffusion characteristics of underwater gas pipeline. CIESC Journal 71(4):1898−911

doi: 10.11949/0438-1157.20190799
[62]

Li X, Chen G, Zhang R, Zhu H, Fu J. 2018. Simulation and assessment of underwater gas release and dispersion from subsea gas pipelines leak. Process Safety and Environmental Protection 119:46−57

doi: 10.1016/j.psep.2018.07.015
[63]

Yousef YA, Imtiaz S, Khan F. 2021. Subsea pipelines leak-modeling using computational fluid dynamics approach. Journal of Pipeline Systems Engineering and Practice 12(1):04020056

doi: 10.1061/(ASCE)PS.1949-1204.0000500
[64]

Zhang Y, Zhu J, Teng L, Li Y. 2022. Evaluation and dynamic breakup of bubble size distribution of liquified natural gas release underwater. Journal of Natural Gas Science and Engineering 102:104600

doi: 10.1016/j.jngse.2022.104600
[65]

Liu C, Liao Y, Wang S, Li Y. 2020. Quantifying leakage and dispersion behaviors for sub-sea natural gas pipelines. Ocean Engineering 216:108107

doi: 10.1016/j.oceaneng.2020.108107
[66]

Lin S, Yang X, Liu S, Ong MC, Li W. 2024. Experimental research and numerical study of leakage influence on the internal two-phase flow of subsea jumper. Ocean Engineering 299:117411

doi: 10.1016/j.oceaneng.2024.117411
[67]

Zhang Y, Zhu J, Teng L, Song C, Li Y. 2020. Experimental research of LNG accidental underwater release and combustion behavior. Journal of Loss Prevention in the Process Industries 64:104036

doi: 10.1016/j.jlp.2019.104036
[68]

Burgess JJ, Milgram JH. 1983. Experiments with scale models of oil collectors for subsea well blowouts. Applied Ocean Research 5(1):2−12

doi: 10.1016/0141-1187(83)90052-4
[69]

Levich VG, Tobias CW. 1963. Physicochemical hydrodynamics. Journal of the Electrochemical Society 110(11):251C

doi: 10.1149/1.2425619