[1]

Potterat O. 2010. Goji ( Lycium barbarum and L. chinense): phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Medica 76:7−19

doi: 10.1055/s-0029-1186218
[2]

Wang Y, Liang X, Guo S, Li Y, Zhang B, et al. 2019. Evaluation of nutrients and related environmental factors for wolfberry (Lycium barbarum) fruits grown in the different areas of China. Biochemical Systematics and Ecology 86:103916

doi: 10.1016/j.bse.2019.103916
[3]

Zheng Y, Schlag S, Wernlein T, Vetter W. 2024. Comprehensive gas chromatography with mass spectrometry analysis of sterols in red goji berries (Lycium sp.). Food Chemistry 453:139640

doi: 10.1016/j.foodchem.2024.139640
[4]

Uasuf CG, De Angelis E, Guagnano R, Pilolli R, D’Anna C, et al. 2020. 10-Emerging allergens in goji berry superfruit: the identification of new IgE binding proteins towards allergic patients' sera. Biomolecules 10:689

doi: 10.3390/biom10050689
[5]

Yao R, Heinrich M, Weckerle CS. 2018. The genus Lycium as food and medicine: a botanical, ethnobotanical and historical review. Journal of Ethnopharmacology 212:50−66

doi: 10.1016/j.jep.2017.10.010
[6]

Boulila A, Bejaoui A. 2015. Lycium intricatum Boiss.: an unexploited and rich source of unsaturated fatty acids, 4-desmethylsterols and other valuable phytochemicals. Lipids in Health and Disease 14:59

doi: 10.1186/s12944-015-0055-9
[7]

Konarska A. 2018. Microstructural and histochemical characteristics of Lycium barbarum L. fruits used in folk herbal medicine and as functional food. Protoplasma 255:1839−54

doi: 10.1007/s00709-018-1277-2
[8]

Zhang XX, Ni ZJ, Zhang F, Thakur K, Zhang JG, et al. 2022. Physicochemical and antioxidant properties of Lycium barbarum seed dreg polysaccharides prepared by continuous extraction. Food Chemistry: X 14:100282

doi: 10.1016/j.fochx.2022.100282
[9]

Zhao X, Dong B, Li P, Wei W, Dang J, et al. 2018. Fatty acid and phytosterol composition, and biological activities of Lycium ruthenicum Murr. seed oil. Journal of Food Science 83:2448−56

doi: 10.1111/1750-3841.14328
[10]

Zhang YX, Wang P, Liu DH. 2008. Research Progress of activated components in Lycium barbarum L. Journal of Agricultural Sciences 29(2):79−83 (in Chinese)

[11]

Wu H, Liu D. 2013. Functional properties of seed protein isolate from Chinese wolfberry (Lycium barbarum L.). Food Science 34:28−32

doi: 10.7506/spkx1002-6630-201309007
[12]

Huang L, Li Y, Yang D, Guo J. 2021. Feasibility study on comprehensive utilization of the wolfberry fermented residue. Food industry 42(10):239−43 (in Chinese)

[13]

Men Y, Fu S, Xu C, Zhu Y, Sun Y. 2021. Supercritical fluid CO2 extraction and microcapsule preparation of Lycium barbarum residue oil rich in zeaxanthin dipalmitate. Foods 10:1468

doi: 10.3390/foods10071468
[14]

Zhou J, Gao L, Wang W, Yang H. 2012. The analysis of Lycium seed oil by various extraction process. Science and Technology of Food Industry 33:110−11

[15]

Zhang Y, Li X, Xu Y, Wang M, Wang F. 2022. Comparison of chemical characterization and oxidative stability of Lycium barbarum seed oils: A comprehensive study based on processing methods. Journal of Food Science 87:3888−99

doi: 10.1111/1750-3841.16280
[16]

Jha AK, Sit N. 2022. Extraction of bioactive compounds from plant materials using combination of various novel methods: a review. Trends in Food Science & Technology 119:579−91

doi: 10.1016/j.jpgs.2021.11.019
[17]

Liu Z, Liu B, Kang H, Yue H, Chen C, et al. 2019. Subcritical fluid extraction of Lycium ruthenicum seeds oil and its antioxidant activity. International Journal of Food Science & Technology 54:161−69

doi: 10.1111/ijfs.13920
[18]

Li G, You J, Suo Y, Song C, Sun Z, et al. 2011. A developed pre-column derivatization method for the determination of free fatty acids in edible oils by reversed-phase HPLC with fluorescence detection and its application to Lycium barbarum seed oil. Food Chemistry 125:1365−72

doi: 10.1016/j.foodchem.2010.10.007
[19]

Li G, Shi J, Suo Y, Sun Z, Xia L, et al. 2011. Supercritical CO2 cell breaking extraction of Lycium barbarum seed oil and determination of its chemical composition by HPLC/APCI/MS and antioxidant activity. LWT - Food Science and Technology 44:1172−78

doi: 10.1016/j.lwt.2010.10.012
[20]

Xu F, Zhao Y. 2014. Optimization of aqueous enzymatic method extraction of Lycium seed oil by quadratic orthogonal rotation design. Food & Machinery 30:219−222+272

doi: 10.3969/j.issn.1003-5788.2014.02.054
[21]

Tileuberdi N, Turgumbayeva A, Yeskaliyeva B, Sarsenova L, Issayeva R. 2022. Extraction, isolation of bioactive compounds and therapeutic potential of rapeseed (Brassica napus L.). Molecules 27:8824

doi: 10.3390/molecules27248824
[22]

Hu Z, Hu C, Li Y, Jiang Q, Li Q, et al. 2024. Pumpkin seed oil: a comprehensive review of extraction methods, nutritional constituents, and health benefits. Journal of the Science of Food and Agriculture 104:572−82

doi: 10.1002/jsfa.12952
[23]

Cirillo G, Curcio M, Vittorio O, Iemma F, Restuccia D, et al. 2016. Polyphenol conjugates and human health: a perspective review. Critical Reviews in Food Science and Nutrition 56:326−37

doi: 10.1080/10408398.2012.752342
[24]

Rana A, Samtiya M, Dhewa T, Mishra V, Aluko RE. 2022. Health benefits of polyphenols: A concise review. Journal of Food Biochemistry 46:e14264

doi: 10.1111/jfbc.14264
[25]

Kumar N, Goel N. 2019. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports 24:e00370

doi: 10.1016/j.btre.2019.e00370
[26]

Gao C. 2016. Study on the Chemical Constituents of the Seeds from Lycium barbarum L. Southwest University of Science and Technology

[27]

Xin G, Zhu F, Du B, Xu B. 2017. Antioxidants distribution in pulp and seeds of black and red goji berries as affected by boiling processing. Journal of Food Quality 2017:3145946

doi: 10.1155/2017/3145946
[28]

Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I. 2007. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science 12:29−36

doi: 10.1016/j.tplants.2006.11.006
[29]

Santos-Buelga C, Scalbert A. 2000. Proanthocyanidins and tannin-like compounds-nature, occurrence, dietary intake and effects on nutrition and health. Journal of the Science of Food and Agriculture 80:1094−117

doi: 10.1002/(SICI)1097-0010(20000515)80:7<1094::AID-JSFA569>3.0.CO;2-1
[30]

Magiera S, Zaręba M. 2015. Chromatographic determination of phenolic acids and flavonoids in Lycium barbarum L. and evaluation of antioxidant activity. Food Analytical Methods 8:2665−74

doi: 10.1007/s12161-015-0166-y
[31]

Chen M, Huang W, Yin Z, Zhang W, Kong Q, et al. 2022. Environmentally-driven metabolite and lipid variations correspond to altered bioactivities of black wolfberry fruit. Food Chemistry 372:131342

doi: 10.1016/j.foodchem.2021.131342
[32]

Xie JH, Jin ML, Morris GA, Zha XQ, Chen HQ, et al. 2016. Advances on bioactive polysaccharides from medicinal plants. Critical Reviews in Food Science and Nutrition 56:S84−S60

doi: 10.1080/10408398.2015.1069255
[33]

Jia L, Li W, Li J, Li Y, Song H, et al. 2016. Lycium barbarum polysaccharide attenuates high-fat diet-induced hepatic steatosis by up-regulating SIRT1 expression and deacetylase activity. Scientific Reports 6:36209

doi: 10.1038/srep36209
[34]

Yang W, Huang G, Chen F, Huang H. 2021. Extraction/synthesis and biological activities of selenopolysaccharide. Trends in Food Science & Technology 109:211−18

doi: 10.1016/j.jpgs.2021.01.028
[35]

Masci A, Carradori S, Casadei MA, Paolicelli P, Petralito S, et al. 2018. Lycium barbarum polysaccharides: extraction, purification, structural characterisation and evidence about hypoglycaemic and hypolipidaemic effects. A review. Food Chemistry 254:377−89

doi: 10.1016/j.foodchem.2018.01.176
[36]

Long X, Ye L, Cai L, Liu Y. 2017. Extraction of polysaccharide in Lycium barbarum residue. Science and Technology of Food Industry 38:248−51

doi: 10.13386/j.issn1002-0306.2017.09.038
[37]

Ji YH, Liao AM, Huang JH, Thakur K, Li XL, et al. 2019. Physicochemical and antioxidant potential of polysaccharides sequentially extracted from Amana edulis. International Journal of Biological Macromolecules 131:453−60

doi: 10.1016/j.ijbiomac.2019.03.089
[38]

Cao C, Wang Z, Gong G, Huang W, Huang L, et al. 2022. Effects of Lycium barbarum Polysaccharides on Immunity and Metabolic Syndrome Associated with the Modulation of Gut Microbiota: A Review. Foods 11:3177

doi: 10.3390/foods11203177
[39]

Tang S, Wang T, Huang C, Lai C, Fan Y, et al. 2019. Sulfated modification of arabinogalactans from Larix principis-rupprechtii and their antitumor activities. Carbohydrate Polymers 215:207−12

doi: 10.1016/j.carbpol.2019.03.069
[40]

Zhang XX, Zhang WW, Ni ZJ, Thakur K, Zhang JG, et al. 2024. Effects of different chemical modifications on physicochemical and antioxidation properties of Lycium barbarum seed dreg polysaccharides. Food Chemistry: X 22:101271

doi: 10.1016/j.fochx.2024.101271
[41]

Udenigwe CC, Aluko RE. 2011. Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates. International Journal of Molecular Sciences 12:3148−61

doi: 10.3390/ijms12053148
[42]

Doiron KJ, Yu P. 2017. Recent research in flaxseed (oil seed) on molecular structure and metabolic characteristics of protein, heat processing-induced effect and nutrition with advanced synchrotron-based molecular techniques. Critical Reviews in Food Science and Nutrition 57:8−17

doi: 10.1080/10408398.2013.764513
[43]

Abrantes AM, Pires AS, Monteiro L, Teixo R, Neves AR, et al. 2020. Tumour functional imaging by PET. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1866:165717

doi: 10.1016/j.bbadis.2020.165717
[44]

Mero A. 1999. Leucine supplementation and intensive training. Sports Medicine 27:347−58

doi: 10.2165/00007256-199927060-00001
[45]

Tomé D. 2013. Digestibility issues of vegetable versus animal proteins: protein and amino acid requirements—functional aspects. Food and Nutrition Bulletin 34:272−74

doi: 10.1177/156482651303400225
[46]

Moran ET. 2004. Husbandry techniques. In Poultry Meat Processing and Quality, ed. Mead GC. UK: Woodhead Publishing. pp. 38-64. doi: 10.1533/9781855739031.38

[47]

Zheng L, Zhang T, Xie L, Karrar E, Shi L, et al. 2020. Physicochemical characteristics of Actinostemma lobatum Maxim, kernel oil by supercritical fluid extraction and conventional methods. Industrial Crops and Products 152:112516

doi: 10.1016/j.indcrop.2020.112516
[48]

Lee YC, Oh SW, Chang J, Kim IH. 2004. Chemical composition and oxidative stability of safflower oil prepared from safflower seed roasted with different temperatures. Food Chemistry 84:1−6

doi: 10.1016/S0308-8146(03)00158-4
[49]

Davis JP, Dean LL. 2016. Peanut composition, flavor and nutrition. In Peanuts: Genetics, Processing, and Utilization, ed. Stalker HT, Wilson RF. Cambridge, MA and Urbana, IL: Academic Press and AOCS Press. pp. 289−345. doi: 10.1016/B978-1-63067-038-2.00011-3

[50]

Moreau RA, Nyström L, Whitaker BD, Winkler-Moser JK, Baer DJ, et al. 2018. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Progress in Lipid Research 70:35−61

doi: 10.1016/j.plipres.2018.04.001
[51]

Lohr M. 2009. Carotenoids. In The Chlamydomonas Sourcebook, eds. Harris EH, Stern DB, Witman GB. UK: Academic Press. pp. 799−817. doi: 10.1016/B978-0-12-370873-1.00029-0

[52]

Umair M, Jabbar S, Nasiru MM, Lu Z, Zhang J, et al. 2021. Ultrasound-assisted extraction of carotenoids from carrot pomace and their optimization through response surface methodology. Molecules 26:6763

doi: 10.3390/molecules26226763
[53]

Wang K, Sasaki T, Li W, Li Q, Wang Y, et al. 2011. Two novel steroidal alkaloid glycosides from the seeds of Lycium barbarum. Chemistry & Biodiversity 8:2277−84

doi: 10.1002/cbdv.201000293
[54]

Chaudhuri A, Behan PO. 2004. Fatigue in neurological disorders. The Lancet 363:978−88

doi: 10.1016/S0140-6736(04)15794-2
[55]

Li M, Tian X, Li X, Mao T, Liu T. 2021. Anti-fatigue activity of Gardenia yellow pigment and Cistanche phenylethanol glycosides mixture in hypoxia. Food Bioscience 40:100902

doi: 10.1016/j.fbio.2021.100902
[56]

Knoop V, Cloots B, Costenoble A, Debain A, Vella Azzopardi R, et al. 2021. Fatigue and the prediction of negative health outcomes: a systematic review with meta-analysis. Ageing Research Reviews 67:101261

doi: 10.1016/j.arr.2021.101261
[57]

Zielinski MR, Systrom DM, Rose NR. 2019. Fatigue, sleep, and autoimmune and related disorders. Frontiers in Immunology 10:1827

doi: 10.3389/fimmu.2019.01827
[58]

Jiang YD, Dong XW, Mao ZY, Dong QZ. 2004. Effect of Lycium Barbarum seed oil on endurance and anti-fatigue. Journal of Ningxia Medical College 26(1):19−21

doi: 10.3969/j.issn.1674-6309.2004.01.008
[59]

Zheng J, Xue MQ, Quan HF, Wang R, Zhu YF, et al. 2019. Beneficial effects of Lycium barbarum seed oil on chronically stressed mice. Chinese Pharmacological Bulletin 110−16

doi: 10.3969/j.issn.1001-1978.2019.01.022
[60]

Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, et al. 2020. Metabolic impact of flavonoids consumption in obesity: from central to peripheral. Nutrients 12:2393

doi: 10.3390/nu12082393
[61]

Yang Y, Yu L, Zhu T, Xu S, He J, et al. 2023. Neuroprotective effects of Lycium barbarum polysaccharide on light-induced oxidative stress and mitochondrial damage via the Nrf2/HO-1 pathway in mouse hippocampal neurons. International Journal of Biological Macromolecules 251:126315

doi: 10.1016/j.ijbiomac.2023.126315
[62]

Yang YH, Li CX, Zhang RB, Shen Y, Xu XJ, et al. 2024. A review of the pharmacological action and mechanism of natural plant polysaccharides in depression. Frontiers in Pharmacology 15:1348019

doi: 10.3389/fphar.2024.1348019
[63]

Guo P, Zhang B, Zhao J, Wang C, Wang Z, et al. 2022. Medicine-food herbs against Alzheimer's disease: a review of their traditional functional features, substance basis, clinical practices and mechanisms of action. Molecules 27:901

doi: 10.3390/molecules27030901
[64]

Ogaly HA, Abdel-Rahman RF, Mohamed MAE, OA AF, Khattab MS, et al. 2022. Thymol ameliorated neurotoxicity and cognitive deterioration in a thioacetamide-induced hepatic encephalopathy rat model; involvement of the BDNF/CREB signaling pathway. Food Function 13:6180−94

doi: 10.1039/d1fo04292k
[65]

Liaqat H, Parveen A, Kim SY. 2022. Neuroprotective natural products’ regulatory effects on depression via Gut–Brain axis targeting tryptophan. Nutrients 14:3270

doi: 10.3390/nu14163270
[66]

Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. 2019. Insulin resistance: Review of the underlying molecular mechanisms. Journal of Cellular Physiology 234:8152−61

doi: 10.1002/jcp.27603
[67]

Bellou V, Belbasis L, Tzoulaki I, Evangelou E. 2018. Risk factors for type 2 diabetes mellitus: an exposure-wide umbrella review of meta-analyses. PLoS ONE 13:e0194127

doi: 10.1371/journal.pone.0194127
[68]

Veronese N, Cooper C, Reginster JY, Hochberg M, Branco J, et al. 2019. Type 2 diabetes mellitus and osteoarthritis. Seminars in Arthritis and Rheumatism 49:9−19

doi: 10.1016/j.semarthrit.2019.01.005
[69]

Zhu M, Zhang C, Yang W, Wang X, Yang W. 2011. Effect of Lycium Barbarum seed oil on serum SOD, MDA and GSH in C57BL/6J mice with type-2 diabetes. Journal of Ningxia Medical University 33:201−03

doi: 10.16050/j.cnki.issn1674-6309.2011.03.008
[70]

Tönnies T, Stahl-Pehe A, Baechle C, Castillo K, Yossa R, et al. 2019. Diabetic nephropathy and quality of life among youths with long-duration type 1 diabetes: a population-based cross-sectional study. Pediatric Diabetes 20:613−21

doi: 10.1111/pedi.12837
[71]

Yang W, Li H, Wu J, Li J, Zhu M, et al. 2012. Protective effect of Lycium Barbarum seed oil on renal lesion in C57BL/6J Mice with type 2 diabetic. Journal of Ningxia Medical University 34:1−3

doi: 10.16050/j.cnki.issn1674-6309.2012.01.009
[72]

Silva CS, Alves BCA, Azzalis LA, Junqueira VBC, Fonseca R, et al. 2017. Goji Berry (Lycium Barbarum) in the treatment of diabetes melitus: a systematic review. Food Research 1:221−24

doi: 10.26656/fr.2017.6.102
[73]

Li Y, Pan T, Xu G. 2013. Comprehensive utilization of Chinese wolfberry pomace. China Brewing 32(11):129−31

doi: 10.3969/j.issn.0254-5071.2013.11.033
[74]

Wu J, Chen T, Wan F, Wang J, Li X, et al. 2021. Structural characterization of a polysaccharide from Lycium barbarum and its neuroprotective effect against β-amyloid peptide neurotoxicity. International Journal of Biological Macromolecules 176:352−63

doi: 10.1016/j.ijbiomac.2021.02.016
[75]

Zhang F, Zhang X, Guo S, Cao F, Zhang X, et al. 2020. An acidic heteropolysaccharide from Lycii fructus: Purification, characterization, neurotrophic and neuroprotective activities in vitro. Carbohydrate Polymers 249:116894

doi: 10.1016/j.carbpol.2020.116894
[76]

Wu J, Zhang X, Li H, Yang W. 2013. Protective effect of Lycium seed oil on chronic cerebral hypoperfusion injury in rats. West China Journal of Pharmaceutical Sciences 28:150−51

doi: 10.13375/j.cnki.wcjps.2013.02.01
[77]

Malta MB, Martins J, Novaes LS, Dos Santos NB, Sita L, et al. 2021. Norepinephrine and glucocorticoids modulate chronic unpredictable stress-induced increase in the type 2 CRF and glucocorticoid receptors in brain structures related to the HPA axis activation. Molecular Neurobiology 58:4871−85

doi: 10.1007/s12035-021-02470-2
[78]

Niu Y, Zhang G, Sun X, He S, Dou G. 2023. Distinct Role of Lycium barbarum L. polysaccharides in oxidative stress-related ocular diseases. Pharmaceuticals 16:215

doi: 10.3390/ph16020215
[79]

Li F, Li H, Li S, He Z. 2024. A review of Lycium ruthenicum Murray: Geographic distribution tracing, bioactive components, and functional properties. Heliyon 10:e39566

doi: 10.1016/j.heliyon.2024.e39566
[80]

Cao S, Du J, Hei Q. 2017. Lycium barbarum polysaccharide protects against neurotoxicity via the Nrf2-HO-1 pathway. Experimental and Therapeutic Medicine 14:4919−27

doi: 10.3892/etm.2017.5127
[81]

Zhou SF, Cheng J, Zhou ZW, Sheng HP, He LJ, et al. 2014. An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. Drug Design, Development and Therapy 9:33

doi: 10.2147/DDDT.S72892
[82]

Sun Y, Ho CT, Zhang X. 2023. Neuroprotection of food bioactives in neurodegenerative diseases: role of the gut microbiota and innate immune receptors. Journal of Agricultural and Food Chemistry 71:2718−33

doi: 10.1021/acs.jafc.2c07742
[83]

Zhang T, Wang T, Liu R, Chang M, Jin Q, et al. 2020. Chemical characterization of fourteen kinds of novel edible oils: a comparative study using chemometrics. LWT 118:108725

doi: 10.1016/j.lwt.2019.108725
[84]

Xing L, Lu X, Tang Z, Li X, Dang F, et al. 2022. Quality and in vitro antioxidant activity of Lycium ruthenicum seed oil. China Oils and Fats 47(9):90−94

doi: 10.19902/j.cnki.zgyz.1003-7969.210417
[85]

Olech M, Kasprzak K, Wójtowicz A, Oniszczuk T, Nowak R, et al. 2020. Polyphenol composition and antioxidant potential of instant gruels enriched with Lycium barbarum L. fruit. Molecules 25:4538

doi: 10.3390/molecules25194538
[86]

Ren F, Fang Q, Feng T, Li Y, Wang Y, et al. 2019. Lycium barbarum and Laminaria japonica polysaccharides improve Cashmere goat sperm quality and fertility rate after cryopreservation. Theriogenology 129:29−36

doi: 10.1016/j.theriogenology.2019.02.011
[87]

Tan X, Sun Z, Ye C, Lin H. 2019. The effects of dietary Lycium barbarum extract on growth performance, liver health and immune related genes expression in hybrid grouper (Epinephelus lanceolatus♂ × E. fuscoguttatus♀) fed high lipid diets. Fish & Shellfish Immunology 87:847−52

doi: 10.1016/j.fsi.2019.02.016
[88]

Yang Z, Wang Y, Chen D, Zhao S, Hu N, et al. 2020. Effects of Lycium barbarum seed oil (LBSO) on anti-inflammation in the aging Sertoli cells of mice (TM4 cells). Journal of Shandong University (Health Sciences) 58:15−22

[89]

Yang ZJ, Wang YX, Zhao S, Hu N, Chen DM, et al. 2021. SIRT 3 was involved in Lycium barbarum seed oil protection testis from oxidative stress: in vitro and in vivo analyses. Pharmaceutical Biology 59:1312−23

doi: 10.1080/13880209.2021.1961822
[90]

Oduwole OO, Huhtaniemi IT, Misrahi M. 2021. The roles of luteinizing hormone, follicle-stimulating hormone and testosterone in spermatogenesis and folliculogenesis revisited. International Journal of Molecular Sciences 22:12735

doi: 10.3390/ijms222312735
[91]

Tian R, Xing S, Hu N, Ma W, Liu C, et al. 2024. Lycium barbarum seed oil activates Nrf2/ARE pathway to reduce oxidative damage in tesitis of subacute aging rats. Chinese Pharmacological Bulletin 40:490−98

doi: 10.12360/CPB202310039
[92]

Ruiz-León AM, Lapuente M, Estruch R, Casas R. 2019. Clinical advances in immunonutrition and atherosclerosis: a review. Frontiers in Immunology 10:837

doi: 10.3389/fimmu.2019.00837
[93]

Libby P. 2021. The changing landscape of atherosclerosis. Nature 592:524−33

doi: 10.1038/s41586-021-03392-8
[94]

Jiang Y, Cao J, Dong Q, Wang S. 2007. Anti-atherosclerosis potency by Lycium seed oil and its possible mechanism of PKC and MMPs. West China Journal of Pharmaceutical Sciences 22(1):9−12

doi: 10.13375/j.cnki.wcjps.2007.01.004
[95]

Qiao X, Khalil RA. 2009. Role of protein kinase C and related pathways in vascular smooth muscle contraction and hypertension. In Neurovascular Medicine: Pursuing Cellular Longevity for Healthy Aging, ed. Maiese K. New York: Oxford University Press. pp. 21–45. doi: 10.1093/acprof:oso/9780195326697.003.0002

[96]

Zhang JG, Zhang Y, Yang G, Zhang WW, Thakur K, et al. 2024. Carboxymethylated Lycium barbarum seed dreg dietary fiber alleviates high fat diet-induced hyperlipidemia in mice via intestinal regulation. Food & Function 15:6955−65

doi: 10.1039/d4fo02123a
[97]

Wang X, Yin X, Lu J, Zhang J, Yang Y. 2024. Protective effect of Lycium barbarum seed oil on ultraviolet B-induced photodamage in human immortalized keratinocytes cells. Food and Fermentation Industries 50:47−55

doi: 10.13995/j.cnki.11-1802/ts.034937
[98]

Young AR, Claveau J, Rossi AB. 2017. Ultraviolet radiation and the skin: Photobiology and sunscreen photoprotection. Journal of the American Academy of Dermatology 76:S100−S109

doi: 10.1016/j.jaad.2016.09.038
[99]

Liu M, Liang J, Jing C, Yue Y, Xia Y, et al. 2023. Preparation and characterization of Lycium Barbarum seed oil Pickering emulsions and evaluation of antioxidant activity. Food Chemistry 405:134906

doi: 10.1016/j.foodchem.2022.134906
[100]

Wu Y, Lei C, Li J, Chen Y, Liang H, et al. 2022. Improvement of O/W emulsion performance by adjusting the interaction between gelatin and bacterial cellulose nanofibrils. Carbohydrate Polymers 276:118806

doi: 10.1016/j.carbpol.2021.118806
[101]

Zhang Q, He J, Liu C, Sui H, Wang W. 2014. Influence of drugs, carriers and additives on gelation behavior of poloxamer system. Chinese Traditional Patent Medicine 36(7):1397−401

doi: 10.3969/j.issn.1001-1528.2014.07.013
[102]

Sohn DW, Kim HY, Kim SD, Lee EJ, Kim HS, et al. 2008. Elevation of intracavernous pressure and NO-cGMP activity by a new herbal formula in penile tissues of spontaneous hypertensive male rats. Journal of Ethnopharmacology 120:176−80

doi: 10.1016/j.jep.2008.08.005
[103]

Yao R, Heinrich M, Wang Z, Weckerle CS. 2018. Quality control of goji (fruits of Lycium barbarum L. and L. chinense Mill.): a value chain analysis perspective. Journal of Ethnopharmacology 224:349−58

doi: 10.1016/j.jep.2018.06.010
[104]

Gobena W, Girma S, Legesse T, Abera F, Gonfa A, et al. 2018. Microbial safety and quality of edible oil examined at Ethiopian public health institute, Addis Ababa, Ethiopia: a retrospective study. Journal of Microbiology & Experimentation 6(3):136−39

doi: 10.15406/jmen.2018.06.00203
[105]

Ahmed I, Chatha SAS, Iftikhar N, Farooq MF, Zulfiqar H, et al. 2024. Nutritional quality of selected commercially available seed oils and effect of storage conditions on their oxidative stability. PLoS One 19:e0308117

doi: 10.1371/journal.pone.0308117
[106]

Yu Z, Xia M, Lan J, Yang L, Wang Z, et al. 2023. A comprehensive review on the ethnobotany, phytochemistry, pharmacology and quality control of the genus Lycium in China. Food & Function 14:2998−3025

doi: 10.1039/D2FO03791B
[107]

Shi X, Shang X, Dou K, Li S. 2011. Study and Produce on the Nutrition Health Vermicelli. The Food Industry 32(9):11−13

[108]

Li T. 2023. Analysis and application of flavor characteristics of enzymatic hyrolysates of wolfberry seed meal and its Maillard reaction products. Thesis (in Chinese). Ningxia University, Yinchuan, China. pp. 27−67

[109]

Wu Y. 2023. Isolation, Identification and Mechanism of ACE Inhibitory Peptides from Wolfberry Seed Meal. Dissertation (in Chinese). Ningxia University, Yinchuan, China. pp. 26−48

[110]

Li T, Wei C, Zhang H, Wei Z. 2022. Development of enzymatic hydrolysis of wolfberry (Lycium barbarum L.) seed meal and its maillard peptide salt. China Food Additives 33(12):62−74

doi: 10.19804/j.issn1006-2513.2022.12.009
[111]

Zhu Q, Zhang WW, Ni ZJ, Thakur K, Zhang JG, et al. 2023. Development and characterization of novel Lycium barbarum seed oil-based oleogels and their application in functional chocolate. Food Bioscience 56:103155

doi: 10.1016/j.fbio.2023.103155
[112]

Sun Y, Ma Z, Xie F, Li L, Ma S, et al. 2018. Microbial technology upgrad-ing of wolfberry by-product resource utilization and demonstration. Sci-Tech Achievements (in Chinese)

[113]

Mu Y, Zhang H, Ma C, Zhang G. 2021. Effects of different supplemental levels of Lycium barbarum by-product on fermentation characteristic and microbial diversity of Caragana korshinskii silage. Chinese Journal of Animal Nutrition 33(9):5152−61

doi: 10.3969/j.issn.1006-267x.2021.09.035
[114]

Zhang GJ, Wang HM, Xue YL, Xiang HX, Zhang H, et al. 2020.Research and integrated demonstration of key technologies for forage production and high-value bioutilization in Ningxia. Sci. Tech. Report (in Chinese). Ningxia University, Ningxia Hui Autonomous Region, China

[115]

Sousa S, Machado M, Carvalho AP, Pintado M, Gomes AM. 2023. Alternative sources of bioactive lipids: Challenges and perspectives (microalgae, plant seeds). In Bioactive Lipids, ed. Pintado M, Machado M, Gomes AM, Salsinha AS, Rodríguez-Alcalá LM. UK: Academic Press. pp. 297−320. doi: https://doi.org/10.1016/B978-0-12-824043-4.00009-9

[116]

Rajaei A, Barzegar M, Yamini Y. 2005. Supercritical fluid extraction of tea seed oil and its comparison with solvent extraction. European Food Research and Technology 220:401−05

doi: 10.1007/s00217-004-1061-8
[117]

Amagase H, Nance D. 2008. A randomized, double-blind, placebo-controlled, clinical study of the general effects of a standardized Lycium barbarum (Goji) juice, GoChi™. Journal of Alternative and Complementary Medicine 14:403−12

doi: 10.1089/acm.2008.0004
[118]

Park JH, Bok MK, Kim J, Maeng S, Kim SH, et al. 2021. Effect of an extract of Pinus koraiensis leaves, Lycium chinense fruit, and Saururus chinensis (Lour.) Baill. leaves on liver function in excessive drinkers: a randomized, double-blind, placebo-controlled trial. Journal of Functional Foods 83:104535

doi: 10.1016/j.jff.2021.104535
[119]

Yang R, Rao Z. 2024. Clinical Efficacy of eye serum containing Lycium barbarum fruit extract and Litchi Chinensis pericarp extract. Flavour Fragrance Cosmetics 24(3):122−27

doi: 10.20099/j.issn.1000-4475.2023.0299
[120]

Yunusova SG, Lyashenko SS, Sekinaeva MA, Sidorov RA, Denisenko ON, et al. 2020. Neutral Lipids from Fruit of Lycium barbarum and L. ruthenicum. Chemistry of Natural Compounds 56:793−98

doi: 10.1007/s10600-020-03154-4