| [1] |
Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich MF, et al. 2016. FOXO1 couples metabolic activity and growth state in the vascular endothelium. |
| [2] |
Ludikhuize MC, Meerlo M, Gallego MP, Xanthakis D, Burgaya Julià M, et al. 2020. Mitochondria define intestinal stem cell differentiation downstream of a FOXO/Notch axis. |
| [3] |
Goh KY, Lee WX, Choy SM, Priyadarshini GK, Chua K, et al. 2024. FOXO-regulated DEAF1 controls muscle regeneration through autophagy. |
| [4] |
Santini L, Kowald S, Cerron-Alvan LM, Huth M, Fabing AP, et al. 2024. FoxO transcription factors actuate the formative pluripotency specific gene expression programme. |
| [5] |
Orea-Soufi A, Paik J, Bragança J, Donlon TA, Willcox BJ, et al. 2022. FOXO transcription factors as therapeutic targets in human diseases. |
| [6] |
Tan Z, Pan K, Sun M, Pan X, Yang Z, et al. 2024. CCKBR+ cancer cells contribute to the intratumor heterogeneity of gastric cancer and confer sensitivity to FOXO inhibition. |
| [7] |
Calissi G, Lam EWF, Link W. 2021. Therapeutic strategies targeting FOXO transcription factors. |
| [8] |
Kurayoshi K, Takase Y, Ueno M, Ohta K, Fuse K, et al. 2023. Targeting cis-regulatory elements of FOXO family is a novel therapeutic strategy for induction of leukemia cell differentiation. |
| [9] |
Xing Y, Li A, Yang Y, Li X, Zhang L, et al. 2018. The regulation of FOXO1 and its role in disease progression. |
| [10] |
Jose E, March-Steinman W, Wilson BA, Shanks L, Parkinson C, et al. 2024. Temporal coordination of the transcription factor response to H2O2 stress. |
| [11] |
Chen CP, Chen CY, Wu YH, Chen CY. 2018. Oxidative stress reduces trophoblast FOXO1 and integrin β3 expression that inhibits cell motility. |
| [12] |
Li N, Liu B, Xiong R, Li G, Wang B, et al. 2023. HDAC3 deficiency protects against acute lung injury by maintaining epithelial barrier integrity through preserving mitochondrial quality control. |
| [13] |
Hu L, Hong T, He Y, Wang H, Cao J, et al. 2014. Chromosome segregation-1-like gene participates in ferroptosis in human ovarian granulosa cells via nucleocytoplasmic transport. |
| [14] |
Li L, Qi Q, Luo J, Huang S, Ling Z, et al. 2017. FOXO1-suppressed miR-424 regulates the proliferation and osteogenic differentiation of MSCs by targeting FGF2 under oxidative stress. |
| [15] |
Liu J, Sun Q, Sun X, Wang Q, Zou G, et al. 2023. Therapeutic effects of salvianolic Acid B on angiotensin II-induced atrial fibrosis by regulating atrium metabolism via targeting AMPK/FoxO1/miR-148a-3p axis. |
| [16] |
Chen S, Sun D, Zhang S, Xu L, Wang N, et al. 2024. TIN2 modulates FOXO1 mitochondrial shuttling to enhance oxidative stress-induced apoptosis in retinal pigment epithelium under hyperglycemia. |
| [17] |
Huo Y, Li Q, Yang L, Li X, Sun C, et al. 2023. SDNOR, a novel antioxidative lncRNA, is essential for maintaining the normal state and function of porcine follicular granulosa cells. |
| [18] |
Yao W, Pan Z, Du X, Zhang J, Liu H, Li Q. 2021. NORHA, a novel follicular atresia-related lncRNA, promotes porcine granulosa cell apoptosis via the miR-183-96-182 cluster and foxo1 axis. |
| [19] |
Wang M, Wang Y, Yao W, Du X, Li Q. 2022. Lnc2300 is a cis-acting long noncoding RNA of CYP11A1 in ovarian granulosa cells. |
| [20] |
Sarkar N, Kumar A. 2025. Paradigm shift: microRNAs interact with target gene promoters to cause transcriptional gene activation or silencing. |
| [21] |
Lin F, Li R, Pan ZX, Zhou B, Yu DB, et al. 2012. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. |
| [22] |
Duttke SH, Guzman C, Chang M, Delos Santos NP, McDonald BR, et al. 2024. Position-dependent function of human sequence-specific transcription factors. |
| [23] |
Du X, Li Q, Cao Q, Wang S, Liu H, et al. 2019. Integrated analysis of miRNA-mRNA interaction network in porcine granulosa cells undergoing oxidative stress. |
| [24] |
Wang X, Yang J, Li H, Mu H, Zeng L, et al. 2023. MiR-484 mediates oxidative stress-induced ovarian dysfunction and promotes granulosa cell apoptosis via SESN2 downregulation. |
| [25] |
Shen M, Liu Z, Li B, Teng Y, Zhang J, et al. 2014. Involvement of FOXO1 in the effects of follicle-stimulating hormone on inhibition of apoptosis in mouse granulosa cells. |
| [26] |
Park Y, Maizels ET, Feiger ZJ, Alam H, Peters CA, et al. 2005. Induction of cyclin D2 in rat granulosa cells requires FSH-dependent relief from FOXO1 repression coupled with positive signals from SMAD. |
| [27] |
Law NC, Weck J, Kyriss B, Nilson JH, Hunzicker-Dunn M. 2013. Lhcgr expression in granulosa cells: roles for PKA-phosphorylated β-catenin, TCF3, and FOXO1. |
| [28] |
Meng L, Teerds K, Tao J, Wei H, Jaklofsky M, et al. 2020. Characteristics of circular RNA expression profiles of porcine granulosa cells in healthy and atretic antral follicles. |
| [29] |
Zhang M, Zhang Q, Hu Y, Xu L, Jiang Y, et al. 2017. miR-181a increases FOXO1 acetylation and promotes granulosa cell apoptosis via SIRT1 downregulation. |
| [30] |
Zhou P, Deng F, Yang Z, Cao C, Zhao H, et al. 2022. Ginsenoside RB1 inhibits oxidative stress-induced ovarian granulosa cell injury through AKT-FOXO1 interaction. |
| [31] |
Shen M, Cao Y, Jiang Y, Wei Y, Liu H. 2018. Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy: implication of an antioxidation-independent mechanism. |