| [1] |
Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich MF, et al. 2016. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529:216−20 doi: 10.1038/nature16498 |
| [2] |
Ludikhuize MC, Meerlo M, Gallego MP, Xanthakis D, Burgaya Julià M, et al. 2020. Mitochondria define intestinal stem cell differentiation downstream of a FOXO/Notch axis. Cell Metabolism 32:889−900 doi: 10.1016/j.cmet.2020.10.005 |
| [3] |
Goh KY, Lee WX, Choy SM, Priyadarshini GK, Chua K, et al. 2024. FOXO-regulated DEAF1 controls muscle regeneration through autophagy. Autophagy 2024:1−23 doi: 10.1080/15548627.2024.2374693 |
| [4] |
Santini L, Kowald S, Cerron-Alvan LM, Huth M, Fabing AP, et al. 2024. FoxO transcription factors actuate the formative pluripotency specific gene expression programme. Nature Communications 15:7879 doi: 10.1038/s41467-024-51794-9 |
| [5] |
Orea-Soufi A, Paik J, Bragança J, Donlon TA, Willcox BJ, et al. 2022. FOXO transcription factors as therapeutic targets in human diseases. Trends in Pharmacological Sciences 43:1070−84 doi: 10.1016/j.tips.2022.09.010 |
| [6] |
Tan Z, Pan K, Sun M, Pan X, Yang Z, et al. 2024. CCKBR+ cancer cells contribute to the intratumor heterogeneity of gastric cancer and confer sensitivity to FOXO inhibition. Cell Death & Differentiation 31:1302−17 doi: 10.1038/s41418-024-01360-z |
| [7] |
Calissi G, Lam EWF, Link W. 2021. Therapeutic strategies targeting FOXO transcription factors. Nature Reviews Drug Discovery 20:21−38 doi: 10.1038/s41573-020-0088-2 |
| [8] |
Kurayoshi K, Takase Y, Ueno M, Ohta K, Fuse K, et al. 2023. Targeting cis-regulatory elements of FOXO family is a novel therapeutic strategy for induction of leukemia cell differentiation. Cell Death & Disease 14:642 doi: 10.1038/s41419-023-06168-2 |
| [9] |
Tao W, Zhang G, Liu C, Jin L, Li X, et al. 2023. Low-dose LPS alleviates early brain injury after SAH by modulating microglial M1/M2 polarization via USP19/FOXO1/IL-10/IL-10R1 signaling. Redox Biology 66:102863 doi: 10.1016/j.redox.2023.102863 |
| [10] |
Jose E, March-Steinman W, Wilson BA, Shanks L, Parkinson C, et al. 2024. Temporal coordination of the transcription factor response to H2O2 stress. Nature Communications 15:3440 doi: 10.1038/s41467-024-47837-w |
| [11] |
Chen CP, Chen CY, Wu YH, Chen CY. 2018. Oxidative stress reduces trophoblast FOXO1 and integrin β3 expression that inhibits cell motility. Free Radical Biology and Medicine 124:189−98 doi: 10.1016/j.freeradbiomed.2018.06.006 |
| [12] |
Li N, Liu B, Xiong R, Li G, Wang B, et al. 2023. HDAC3 deficiency protects against acute lung injury by maintaining epithelial barrier integrity through preserving mitochondrial quality control. Redox Biology 63:102746 doi: 10.1016/j.redox.2023.102746 |
| [13] |
Hu L, Hong T, He Y, Wang H, Cao J, et al. 2014. Chromosome segregation-1-like gene participates in ferroptosis in human ovarian granulosa cells via nucleocytoplasmic transport. Antioxidants 13:911 doi: 10.3390/antiox13080911 |
| [14] |
Li L, Qi Q, Luo J, Huang S, Ling Z, et al. 2017. FOXO1-suppressed miR-424 regulates the proliferation and osteogenic differentiation of MSCs by targeting FGF2 under oxidative stress. Scientific Reports 7:42331 doi: 10.1038/srep42331 |
| [15] |
Liu J, Sun Q, Sun X, Wang Q, Zou G, et al. 2023. Therapeutic effects of salvianolic Acid B on angiotensin II-induced atrial fibrosis by regulating atrium metabolism via targeting AMPK/FoxO1/miR-148a-3p axis. Journal of Cardiovascular Translational Research 16:341−57 doi: 10.1007/s12265-022-10303-3 |
| [16] |
Chen S, Sun D, Zhang S, Xu L, Wang N, et al. 2024. TIN2 modulates FOXO1 mitochondrial shuttling to enhance oxidative stress-induced apoptosis in retinal pigment epithelium under hyperglycemia. Death & Differentiation 31:1487−505 doi: 10.1038/s41418-024-01349-8 |
| [17] |
Huo Y, Li Q, Yang L, Li X, Sun C, et al. 2023. SDNOR, a novel antioxidative lncRNA, is essential for maintaining the normal state and function of porcine follicular granulosa cells. Antioxidants 12:799 doi: 10.3390/antiox12040799 |
| [18] |
Yao W, Pan Z, Du X, Zhang J, Liu H, Li Q. 2021. NORHA, a novel follicular atresia-related lncRNA, promotes porcine granulosa cell apoptosis via the miR-183-96-182 cluster and foxo1 axis. Journal of Animal Science and Biotechnology 12:103 doi: 10.1186/s40104-021-00626-7 |
| [19] |
Wang M, Wang Y, Yao W, Du X, Li Q. 2022. Lnc2300 is a cis-acting long noncoding RNA of CYP11A1 in ovarian granulosa cells. Journal of Cellular Physiology 237:4238−50 doi: 10.1002/jcp.30872 |
| [20] |
Qian Y, Liu C, Zeng X, Li LC. 2025. RNAa: mechanisms, therapeutic potential, and clinical progress. Molecular Therapy Nucleic Acids 36(2):102494 doi: 10.1016/j.omtn.2025.102494 |
| [21] |
Lin F, Li R, Pan ZX, Zhou B, Yu DB, et al. 2012. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS One 7:e38640 doi: 10.1371/journal.pone.0038640 |
| [22] |
Duttke SH, Guzman C, Chang M, Delos Santos NP, McDonald BR, et al. 2024. Position-dependent function of human sequence-specific transcription factors. Nature 631:891−98 doi: 10.1038/s41586-024-07662-z |
| [23] |
Du X, Li Q, Cao Q, Wang S, Liu H, et al. 2019. Integrated analysis of miRNA-mRNA interaction network in porcine granulosa cells undergoing oxidative stress. Oxidative Medicine and Cellular Longevity 2019:1041583 doi: 10.1155/2019/1041583 |
| [24] |
Wang X, Yang J, Li H, Mu H, Zeng L, et al. 2023. MiR-484 mediates oxidative stress-induced ovarian dysfunction and promotes granulosa cell apoptosis via SESN2 downregulation. Redox Biology 62:102684 doi: 10.1016/j.redox.2023.102684 |
| [25] |
Shen M, Liu Z, Li B, Teng Y, Zhang J, et al. 2014. Involvement of FOXO1 in the effects of follicle-stimulating hormone on inhibition of apoptosis in mouse granulosa cells. Cell Death & Disease 5:e1475 doi: 10.1038/cddis.2014.400 |
| [26] |
Park Y, Maizels ET, Feiger ZJ, Alam H, Peters CA, et al. 2005. Induction of cyclin D2 in rat granulosa cells requires FSH-dependent relief from FOXO1 repression coupled with positive signals from SMAD. Journal of Biological Chemistry 280:9135−48 doi: 10.1074/jbc.M409486200 |
| [27] |
Law NC, Weck J, Kyriss B, Nilson JH, Hunzicker-Dunn M. 2013. Lhcgr expression in granulosa cells: roles for PKA-phosphorylated β-catenin, TCF3, and FOXO1. Molecular Endocrinology 27:1295−310 doi: 10.1210/me.2013-1025 |
| [28] |
Meng L, Teerds K, Tao J, Wei H, Jaklofsky M, et al. 2020. Characteristics of circular RNA expression profiles of porcine granulosa cells in healthy and atretic antral follicles. International Journal of Molecular Sciences 21:5217 doi: 10.3390/ijms21155217 |
| [29] |
Zhang M, Zhang Q, Hu Y, Xu L, Jiang Y, et al. 2017. miR-181a increases FOXO1 acetylation and promotes granulosa cell apoptosis via SIRT1 downregulation. Cell Death & Disease 8:e3088 doi: 10.1038/cddis.2017.467 |
| [30] |
Zhou P, Deng F, Yang Z, Cao C, Zhao H, et al. 2022. Ginsenoside RB1 inhibits oxidative stress-induced ovarian granulosa cell injury through AKT-FOXO1 interaction. Science China Life Sciences 65:2301−15 doi: 10.1007/s11427-021-2080-x |
| [31] |
Shen M, Cao Y, Jiang Y, Wei Y, Liu H. 2018. Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy: implication of an antioxidation-independent mechanism. Redox Biology 18:138−57 doi: 10.1016/j.redox.2018.07.004 |