[1]

Li M, Liu J, Liang D, Guo C, Ma F. 2021. The relationship between GalUR expression and ascorbate accumulation in kiwifruit. Acta Horticulturae Sinica 38:1641

[2]

Cui Q, Jiang LJ, Wen LL, Tian XL, Yuan Q, et al. 2024. Metabolomic profiles and differential metabolites of volatile components in Citrus aurantium Changshan-huyou pericarp during different growth and development stages. Food Chemistry: X 23:101631

doi: 10.1016/j.fochx.2024.101631
[3]

Liang D, Deng H, Deng Q, Lin L, Lv X, et al. 2020. Dynamic changes of phenolic compounds and their associated gene expression profiles occurring during fruit development and ripening of the Donghong kiwifruit. Journal of Agricultural and Food Chemistry 68:11421−33

doi: 10.1021/acs.jafc.0c04438
[4]

Wang R, Shu P, Zhang C, Zhang J, Chen Y, et al. 2022. Integrative analyses of metabolome and genome-wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis). New Phytologist 233:373−89

doi: 10.1111/nph.17618
[5]

Ferguson AR, Huang H. 2007. Genetic resources of kiwifruit: domestication and breeding. Horticultural Reviews 33:1−121

doi: 10.1002/9780470168011.ch1
[6]

Zhang L, Li Z, Wang Y, Jiang Z, Wang S, et al. 2010. Vitamin C, flower color and ploidy variation of hybrids from a ploidy-unbalanced Actinidia interspecific cross and SSR characterization. Euphytica 175:133−43

doi: 10.1007/s10681-010-0194-z
[7]

Sorrequieta A, Ferraro G, Boggio SB, Valle EM. 2010. Free amino acid production during tomato fruit ripening: a focus on L-glutamate. Amino Acids 38:1523−32

doi: 10.1007/s00726-009-0373-1
[8]

Liu X, Xie X, Zhong C, Li D. 2021. Comparative transcriptome analysis revealed the key genes regulating ascorbic acid synthesis in Actinidia. International Journal of Molecular Sciences 22:12894

doi: 10.3390/ijms222312894
[9]

Deng H, Xia H, Guo Y, Liu X, Lin L, et al. 2022. Dynamic changes in ascorbic acid content during fruit development and ripening of Actinidia latifolia (an ascorbate-rich fruit crop) and the associated molecular mechanisms. International Journal of Molecular Sciences 23:5808

doi: 10.3390/ijms23105808
[10]

Huang HW, Gong JJ, Wang SM, He ZC, Zhang ZH, et al. 2000. Genetic diversity in the genus Actinidia. Biodiversity Science 8:1

doi: 10.17520/biods.2000001
[11]

Liu X, Wu R, Bulley SM, Zhong C, Li D. 2022. Kiwifruit MYBS1‐like and GBF3 transcription factors influence L-ascorbic acid biosynthesis by activating transcription of GDP‐L‐galactose phosphorylase 3. New Phytologist 234:1782−800

doi: 10.1111/nph.18097
[12]

Han X, Zhang Y, Zhang Q, Ma N, Liu X, et al. 2023. Two haplotype-resolved, gap-free genome assemblies for Actinidia latifolia and Actinidia chinensis shed light on the regulatory mechanisms of vitamin C and sucrose metabolism in kiwifruit. Molecular Plant 16:452−70

doi: 10.1016/j.molp.2022.12.022
[13]

Xiong Y, Yan P, Du K, Li M, Xie Y, et al. 2020. Nutritional component analyses of kiwifruit in different development stages by metabolomic and transcriptomic approaches. Journal of the Science of Food and Agriculture 100:2399−409

doi: 10.1002/jsfa.10251
[14]

Zhao CJ, Schieber A, Gänzle MG. 2016. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations – a review. Food Research International 89:39−47

doi: 10.1016/j.foodres.2016.08.042
[15]

Schenck CA, Maeda HA. 2018. Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry 149:82−102

doi: 10.1016/j.phytochem.2018.02.003
[16]

Geng P, Zhang S, Liu J, Zhao C, Wu J, et al. 2020. MYB20, MYB42, MYB43, and MYB85 regulate phenylalanine and lignin biosynthesis during secondary cell wall formation. Plant Physiology 182:1272−83

doi: 10.1104/pp.19.01070
[17]

Tzin V, Galili G, Aharoni A. 2012. Shikimate pathway and aromatic amino acid biosynthesis. eLS 8:32

doi: 10.1002/9780470015902.a0001315.pub2
[18]

Wu J, Chen Y, Yu X, Huang B, Hao S, et al. 2024. The cytosolic aminotransferase VAS1 coordinates aromatic amino acid biosynthesis and metabolism. Science Advances 10:eadk0738

doi: 10.1126/sciadv.adk0738
[19]

Javaid A, Wani S, Iralu N, Javaid L, Meghanath D, et al. 2025. Extraction of high-quality genomic DNA from plants using modified CTAB-based method. In Detection of Plant Viruses, eds Hamid A, Ali G, Shikari A, Saleem S, Wani SH, et al. New York, NY: Springer US. pp. 69–75. doi: 10.1007/978-1-0716-4390-7_13

[20]

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20

doi: 10.1093/bioinformatics/btu170
[21]

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15−21

doi: 10.1093/bioinformatics/bts635
[22]

Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923−30

doi: 10.1093/bioinformatics/btt656
[23]

Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant 16:1733−42

doi: 10.1016/j.molp.2023.09.010
[24]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[25]

Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, et al. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research 47:D309−D314

doi: 10.1093/nar/gky1085
[26]

Wu T, Hu E, Xu S, Chen M, Guo P, et al. 2021. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. The Innovation 2:100141

doi: 10.1016/j.xinn.2021.100141
[27]

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504

doi: 10.1101/gr.1239303
[28]

Hu X, Xu C, Gong J, Li X, Li F, et al. 2024. Biological role of red light supplementation in inositol metabolism during strawberry fruit ripening. Scientia Horticulturae 332:113196

doi: 10.1016/j.scienta.2024.113196
[29]

Du G, Li M, Ma F, Liang D. 2009. Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry 113:557−62

doi: 10.1016/j.foodchem.2008.08.025
[30]

Vlasiuk E, Zawari M, Storer M, Maze MJ, Williman J, et al. 2024. SunGold kiwifruit consumption restores adequate to optimal vitamin C status in people with a history of severe respiratory infections. Antioxidants 13(3):272

doi: 10.3390/antiox13030272
[31]

Bulley SM, Rassam M, Hoser D, Otto W, Schünemann N, et al. 2009. Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. Journal of Experimental Botany 60:765−78

doi: 10.1093/jxb/ern327
[32]

McCallum J, Laing W, Bulley S, Thomson S, Catanach A, et al. 2019. Molecular characterisation of a supergene conditioning super-high vitamin C in kiwifruit hybrids. Plants 8:237

doi: 10.3390/plants8070237
[33]

Boland M. 2013. Kiwifruit proteins and enzymes: actinidin and other significant proteins. Advances in Food and Nutrition Research 68:59−80

doi: 10.1016/B978-0-12-394294-4.00004-3
[34]

Li WQ, Hu QP, Xu JG. 2015. Changes in physicochemical characteristics and free amino acids of hawthorn (Crataegus pinnatifida) fruits during maturation. Food Chemistry 175:50−56

doi: 10.1016/j.foodchem.2014.11.125
[35]

Mu TH, Tan SS, Xue YL. 2009. The amino acid composition, solubility and emulsifying properties of sweet potato protein. Food Chemistry 112:1002−05

doi: 10.1016/j.foodchem.2008.07.012
[36]

Mandrioli R, Mercolini L, Raggi MA. 2013. Recent trends in the analysis of amino acids in fruits and derived foodstuffs. Analytical and Bioanalytical Chemistry 405:7941−56

doi: 10.1007/s00216-013-7025-8
[37]

Zhang J, Wang X, Yu O, Tang J, Gu X, et al. 2011. Metabolic profiling of strawberry (Fragaria × ananassa Duch.) during fruit development and maturation. Journal of Experimental Botany 62:1103−18

doi: 10.1093/jxb/erq343
[38]

Pereira GE, Gaudillere JP, Pieri P, Hilbert G, Maucourt M, et al. 2006. Microclimate influence on mineral and metabolic profiles of grape berries. Journal of Agricultural and Food Chemistry 54:6765−75

doi: 10.1021/jf061013k
[39]

Pomilio AB, Giraudo MA, Duchowicz PR, Castro EA. 2010. QSPR analyses for aminograms in food: citrus juices and concentrates. Food Chemistry 123:917−27

doi: 10.1016/j.foodchem.2010.04.082
[40]

Ma T, Sun X, Zhao J, You Y, Lei Y, et al. 2017. Nutrient compositions and antioxidant capacity of kiwifruit (Actinidia) and their relationship with flesh color and commercial value. Food Chemistry 218:294−304

doi: 10.1016/j.foodchem.2016.09.081
[41]

Zhu F, Alseekh S, Koper K, Tong H, Nikoloski Z, et al. 2022. Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis. The Plant Cell 34:557−78

doi: 10.1093/plcell/koab251
[42]

Xu X, Yu TF, Wei JT, Ma XF, Liu YW, et al. 2024. TaWRKY24 integrates the tryptophan metabolism pathways to participate in defense against Fusarium crown rot in wheat. The Plant Journal 120:1764−85

doi: 10.1111/tpj.17079
[43]

Dhakarey R, Yaritz U, Tian L, Amir R. 2022. A Myb transcription factor, PgMyb308-like, enhances the level of shikimate, aromatic amino acids, and lignins, but represses the synthesis of flavonoids and hydrolyzable tannins, in pomegranate (Punica granatum L.). Horticulture Research 9:uhac008

doi: 10.1093/hr/uhac008