[1]

Flitcroft DI, He M, Jonas JB, Jong M, Naidoo K, et al. 2019. IMI - defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies. Investigative Ophthalmology & Visual Science 60:M20−M30

doi: 10.1167/iovs.18-25957
[2]

Morgan IG, He M, Rose KA. 2017. EPIDEMIC OF PATHOLOGIC MYOPIA: What can laboratory studies and epidemiology tell us? Retina 37:989−97

doi: 10.1097/IAE.0000000000001272
[3]

Wang SK, Guo Y, Liao C, Chen Y, Su G, et al. 2018. Incidence of and factors associated with myopia and high myopia in Chinese children, based on refraction without cycloplegia. JAMA Ophthalmology 136:1017−24

doi: 10.1001/jamaophthalmol.2018.2658
[4]

Morgan IG, French AN, Ashby RS, Guo X, Ding X, et al. 2018. The epidemics of myopia: aetiology and prevention. Progress in Retinal and Eye Research 62:134−49

doi: 10.1016/j.preteyeres.2017.09.004
[5]

Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, et al. 2016. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123:1036−42

doi: 10.1016/j.ophtha.2016.01.006
[6]

Modjtahedi BS, Abbott RL, Fong DS, Lum F, Tan D, et al. 2021. Reducing the global burden of myopia by delaying the onset of myopia and reducing myopic progression in children: the academy's task force on myopia. Ophthalmology 128:816−26

doi: 10.1016/j.ophtha.2020.10.040
[7]

Saw SM, Gazzard G, Shih-Yen EC, Chua WH. 2005. Myopia and associated pathological complications. Ophthalmic & Physiological Optics 25:381−91

doi: 10.1111/j.1475-1313.2005.00298.x
[8]

Ikuno Y. 2017. Overview of the complications of high myopia. Retina 37:2347−51

doi: 10.1097/IAE.0000000000001489
[9]

Zhang X, Jiang J, Kong K, Li F, Chen S, et al. 2024. Optic neuropathy in high myopia: glaucoma or high myopia or both? Progress in Retinal and Eye Research 99:101246

doi: 10.1016/j.preteyeres.2024.101246
[10]

Du R, Xie S, Igarashi-Yokoi T, Watanabe T, Uramoto K, et al. 2021. Continued increase of axial length and its risk factors in adults with high myopia. JAMA Ophthalmology 139:1096−103

doi: 10.1001/jamaophthalmol.2021.3303
[11]

Jiang F, Wang D, Xiao O, Guo X, Yin Q, et al. 2024. Four-year progression of myopic maculopathy in children and adolescents with high myopia. JAMA Ophthalmology 142:180−86

doi: 10.1001/jamaophthalmol.2023.6319
[12]

Deng J, Xu X, Pan CW, Wang J, He M, et al. 2024. Myopic maculopathy among Chinese children with high myopia and its association with choroidal and retinal changes: the SCALE-HM study. British Journal of Ophthalmology 108:720−28

doi: 10.1136/bjo-2022-321839
[13]

Wang YX, Yang H, Wei CC, Xu L, Wei WB, et al. 2023. High myopia as risk factor for the 10-year incidence of open-angle glaucoma in the Beijing Eye Study. British Journal of Ophthalmology 107:935−40

doi: 10.1136/bjophthalmol-2021-320644
[14]

Ha A, Kim CY, Shim SR, Chang IB, Kim YK. 2022. Degree of myopia and glaucoma risk: a dose-response meta-analysis. American Journal of Ophthalmology 236:107−19

doi: 10.1016/j.ajo.2021.10.007
[15]

Pan T, Su Y, Yuan ST, Lu HC, Hu ZZ, et al. 2018. Optic disc and peripapillary changes by optic coherence tomography in high myopia. International Journal of Ophthalmology 11:874−80

doi: 10.18240/ijo.2018.05.25
[16]

Wang YX, Panda-Jonas S, Jonas JB. 2021. Optic nerve head anatomy in myopia and glaucoma, including parapapillary zones alpha, beta, gamma and delta: Histology and clinical features. Progress in Retinal and Eye Research 83:100933

doi: 10.1016/j.preteyeres.2020.100933
[17]

Jonas JB, Spaide RF, Ostrin LA, Logan NS, Flitcroft I, et al. 2023. IMI-nonpathological human ocular tissue changes with axial myopia. Investigative Ophthalmology & Visual Science 64:5

doi: 10.1167/iovs.64.6.5
[18]

Jonas JB, Zhang Q, Xu L, Wei WB, Jonas RA, et al. 2023. Change in the ophthalmoscopical optic disc size and shape in a 10-year follow-up: the Beijing Eye Study 2001−2011. British Journal of Ophthalmology 107:283−88

doi: 10.1136/bjophthalmol-2021-319632
[19]

Jonas JB, Gusek GC, Naumann GOH. 1988. Optic disk morphometry in high myopia. Graefe's Archive for Clinical and Experimental Ophthalmology 226:587−90

doi: 10.1007/BF02169209
[20]

Li Z, Guo X, Xiao O, Lee PY, Liu R, et al. 2018. Optic disc features in highly myopic eyes: the ZOC-BHVI high myopia cohort study. Optometry and Vision Science 95:318−22

doi: 10.1097/OPX.0000000000001200
[21]

Koh V, Tan C, Tan PT, Tan M, Balla V, et al. 2016. Myopic maculopathy and optic disc changes in highly myopic young asian eyes and impact on visual acuity. American Journal of Ophthalmology 164:69−79

doi: 10.1016/j.ajo.2016.01.005
[22]

Graham MV, Wakefield GJ. 1973. Bitemporal visual field defects associated with anomalies of the optic discs. British Journal of Ophthalmology 57:307−14

doi: 10.1136/bjo.57.5.307
[23]

Fuchs A, Pressburger E. 1947. Myopia inversa. Archives of Ophthalmology 37(6):722−39

doi: 10.1001/archopht.1947.00890220744003
[24]

Chang L, Pan CW, Ohno-Matsui K, Lin X, Cheung GCM, et al. 2013. Myopia-related fundus changes in Singapore adults with high myopia. American Journal of Ophthalmology 155:991−999.e1

doi: 10.1016/j.ajo.2013.01.016
[25]

Tay E, Seah SK, Chan SP, Lim ATH, Chew SJ, et al. 2005. Optic disk ovality as an index of tilt and its relationship to myopia and perimetry. American Journal of Ophthalmology 139:247−52

doi: 10.1016/j.ajo.2004.08.076
[26]

Moghadas Sharif N, Shoeibi N, Ehsaei A, Mallen EAH. 2016. Optical coherence tomography and biometry in high myopia with tilted disc. Optometry and Vision Science 93:1380−86

doi: 10.1097/OPX.0000000000000973
[27]

Sung MS, Kang YS, Heo H, Park SW. 2016. Characteristics of optic disc rotation in myopic eyes. Ophthalmology 123:400−7

doi: 10.1016/j.ophtha.2015.10.018
[28]

Samarawickrama C, Mitchell P, Tong L, Gazzard G, Lim L, et al. 2011. Myopia-related optic disc and retinal changes in adolescent children from Singapore. Ophthalmology 118:2050−57

doi: 10.1016/j.ophtha.2011.02.040
[29]

Marsh-Tootle WL, Harb E, Hou W, Zhang Q, Anderson HA, et al. 2017. Optic nerve tilt, crescent, ovality, and torsion in a multi-ethnic cohort of young adults with and without myopia. Investigative Ophthalmology & Visual Science 58:3158−71

doi: 10.1167/iovs.16-20860
[30]

Park HYL, Jung Y, Park CK. 2015. Posterior staphyloma is related to optic disc morphology and the location of visual field defect in normal tension glaucoma patients with myopia. Eye 29:333−41

doi: 10.1038/eye.2014.256
[31]

Zhao XJ, Jiang HY, Li YH, Liu BQ, Xu HX, et al. 2018. Correlations between the optic nerve head morphology and ocular biometrics in highly myopic eyes. International Journal of Ophthalmology 11:997−1001

doi: 10.18240/ijo.2018.06.17
[32]

Sung MS, Kang YS, Heo H, Park SW. 2016. Optic disc rotation as a clue for predicting visual field progression in myopic normal-tension glaucoma. Ophthalmology 123:1484−93

doi: 10.1016/j.ophtha.2016.03.040
[33]

Cheng D, Ruan K, Wu M, Qiao Y, Gao W, et al. 2022. Characteristics of the optic nerve head in myopic eyes using swept-source optical coherence tomography. Investigative Ophthalmology & Visual Science 63:20

doi: 10.1167/iovs.63.6.20
[34]

Zhang YQ, Zhang XJ, Shen RY, Zhang Y, Tang FY, et al. 2024. Exploring optical coherence tomography parameters in eyes with myopic tilted disc. Eye and Vision 11:47

doi: 10.1186/s40662-024-00411-3
[35]

Bak E, Ha A, Kim YW, Lee J, Han YS, et al. 2020. Ten years and beyond longitudinal change of ß-zone parapapillary atrophy: comparison of primary open-angle glaucoma with normal eyes. Ophthalmology 127:1054−63

doi: 10.1016/j.ophtha.2020.01.057
[36]

Vianna JR, Malik R, Danthurebandara VM, Sharpe GP, Belliveau AC, et al. 2016. Beta and gamma peripapillary atrophy in myopic eyes with and without glaucoma. Investigative Ophthalmology & Visual Science 57:3103−11

doi: 10.1167/iovs.16-19646
[37]

Wang YX, Jiang R, Wang NL, Xu L, Jonas JB. 2015. Acute Peripapillary Retinal Pigment Epithelium Changes Associated with Acute Intraocular Pressure Elevation. Ophthalmology 122:2022−28

doi: 10.1016/j.ophtha.2015.06.005
[38]

Jonas JB, Jonas SB, Jonas RA, Holbach L, Dai Y, et al. 2012. Parapapillary atrophy: histological gamma zone and delta zone. PLoS One 7:e47237

doi: 10.1371/journal.pone.0047237
[39]

Jonas JB, Fang Y, Weber P, Ohno-Matsui K. 2018. Parapapillary gamma and delta zones in high myopia. Retina 38:931−38

doi: 10.1097/IAE.0000000000001650
[40]

Dai Y, Jonas JB, Huang H, Wang M, Sun X. 2013. Microstructure of parapapillary atrophy: beta zone and gamma zone. Investigative Ophthalmology & Visual Science 54:2013−18

doi: 10.1167/iovs.12-1125
[41]

Hu G, Chen Q, Xu X, Lv H, Du Y, et al. 2020. Morphological characteristics of the optic nerve head and choroidal thickness in high myopia. Investigative Ophthalmology & Visual Science 61:46

doi: 10.1167/iovs.61.4.46
[42]

Kim M, Choung HK, Lee KM, Oh S, Kim SH. 2018. Longitudinal changes of optic nerve head and peripapillary structure during childhood myopia progression on OCT: boramae myopia cohort study report 1. Ophthalmology 125:1215−23

doi: 10.1016/j.ophtha.2018.01.026
[43]

Han JC, Cho SH, Sohn DY, Kee C. 2016. The characteristics of lamina cribrosa defects in myopic eyes with and without open-angle glaucoma. Investigative Ophthalmology & Visual Science 57:486−94

doi: 10.1167/iovs.15-17722
[44]

Lee SH, Kim TW, Lee EJ, Girard MJA, Mari JM. 2020. Focal lamina cribrosa defects are not associated with steep lamina cribrosa curvature but with choroidal microvascular dropout. Scientific Reports 10:6761

doi: 10.1038/s41598-020-63681-6
[45]

Miki A, Ikuno Y, Asai T, Usui S, Nishida K. 2015. Defects of the lamina cribrosa in high myopia and glaucoma. PLoS One 10:e0137909

doi: 10.1371/journal.pone.0137909
[46]

Freund KB, Ciardella AP, Yannuzzi LA, Pece A, Goldbaum M, et al. 2003. Peripapillary detachment in pathologic myopia. Archives of Ophthalmology 121:197−204

doi: 10.1001/archopht.121.2.197
[47]

Wei YH, Yang CM, Chen MS, Shih YF, Ho TC. 2009. Peripapillary intrachoroidal cavitation in high myopia: reappraisal. Eye 23:141−44

doi: 10.1038/sj.eye.6702961
[48]

Liu R, Li Z, Xiao O, Zhang J, Guo X, et al. 2021. Characteristics of peripapillary intrachoroidal cavitation in highly myopic eyes: the Zhongshan Ophthalmic Center-Brien Holden Vision Institute High Myopia Cohort Study. Retina 41:1057−62

doi: 10.1097/IAE.0000000000002963
[49]

Lee MW, Kim JM, Shin YI, Jo YJ, Kim JY. 2019. Longitudinal changes in peripapillary retinal nerve fiber layer thickness in high myopia: a prospective, observational study. Ophthalmology 126:522−28

doi: 10.1016/j.ophtha.2018.07.007
[50]

Biswas S, Lin C, Leung CKS. 2016. Evaluation of a myopic normative database for analysis of retinal nerve fiber layer thickness. JAMA Ophthalmology 134:1032−39

doi: 10.1001/jamaophthalmol.2016.2343
[51]

Oner V, Aykut V, Tas M, Alakus MF, Iscan Y. 2013. Effect of refractive status on peripapillary retinal nerve fibre layer thickness: a study by RTVue spectral domain optical coherence tomography. British Journal of Ophthalmology 97:75−79

doi: 10.1136/bjophthalmol-2012-301865
[52]

Ilhan C, Citirik M. 2021. The impact of optic disk morphological characteristics on peripapillary retinal nerve fiber layer thickness in non-glaucomatous subjects with high myopia. Photodiagnosis and Photodynamic Therapy 35:102355

doi: 10.1016/j.pdpdt.2021.102355
[53]

Akashi A, Kanamori A, Nakamura M, Fujihara M, Yamada Y, et al. 2013. The ability of macular parameters and circumpapillary retinal nerve fiber layer by three SD-OCT instruments to diagnose highly myopic glaucoma. Investigative Ophthalmology & Visual Science 54:6025−32

doi: 10.1167/iovs.13-12630
[54]

Akashi A, Kanamori A, Ueda K, Inoue Y, Yamada Y, et al. 2015. The ability of SD-OCT to differentiate early glaucoma with high myopia from highly myopic controls and nonhighly myopic controls. Investigative Ophthalmology & Visual Science 56:6573−80

doi: 10.1167/iovs.15-17635
[55]

Sezgin Akcay BI, Gunay BO, Kardes E, Unlu C, Ergin A. 2017. Evaluation of the ganglion cell complex and retinal nerve fiber layer in low, moderate, and high myopia: a study by RTVue spectral domain optical coherence tomography. Seminars In Ophthalmology 32:682−88

doi: 10.3109/08820538.2016.1170157
[56]

Kang MT, Li SM, Li H, Li L, Li SY, et all. 2016. Peripapillary retinal nerve fibre layer thickness and its association with refractive error in Chinese children: the Anyang Childhood Eye Study. Clinical & Experimental Ophthalmology 44:701−09

doi: 10.1111/ceo.12764
[57]

Ucak T, Icel E, Yilmaz H, Karakurt Y, Tasli G, et al. 2020. Alterations in optical coherence tomography angiography findings in patients with high myopia. Eye 34:1129−35

doi: 10.1038/s41433-020-0824-1
[58]

Abdolrahimzadeh S, Parisi F, Plateroti AM, Evangelista F, Fenicia V, et al. 2017. Visual acuity, and macular and peripapillary thickness in high myopia. Current Eye Research 42:1468−73

doi: 10.1080/02713683.2017.1347692
[59]

Leung CKS, Mohamed S, Leung KS, Cheung CYL, Chan SLW, et al. 2006. Retinal nerve fiber layer measurements in myopia: An optical coherence tomography study. Investigative Ophthalmology & Visual Science 47:5171−76

doi: 10.1167/iovs.06-0545
[60]

Hoh ST, Lim MCC, Seah SKL, Lim ATH, Chew SJ, et al. 2006. Peripapillary retinal nerve fiber layer thickness variations with myopia. Ophthalmology 113:773−77

doi: 10.1016/j.ophtha.2006.01.058
[61]

Bennett AG, Rudnicka AR, Edgar DF. 1994. Improvements on Littmann's method of determining the size of retinal features by fundus photography. Graefe's Archive for Clinical and Experimental Ophthalmology 232:361−67

doi: 10.1007/BF00175988
[62]

Littmann H. 1982. Determination of the real size of an object on the fundus of the living eye. Klinische Monatsblatter Fur Augenheilkunde 180:286−89

doi: 10.1055/s-2008-1055068
[63]

Pors LJ, Haasjes C, van Vught L, Hoes NP, Luyten GPM, et al. 2024. Correction method for optical scaling of fundoscopy images: development, validation, and first implementation. Investigative Ophthalmology & Visual Science 65(1):43

doi: 10.1167/iovs.65.1.43
[64]

Lee MW, Nam KY, Park HJ, Lim HB, Kim JY. 2020. Longitudinal changes in the ganglion cell-inner plexiform layer thickness in high myopia: a prospective observational study. The British Journal of Ophthalmology 104:604−09

doi: 10.1136/bjophthalmol-2019-314537
[65]

Seo S, Lee CE, Jeong JH, Park KH, Kim DM, et al. 2017. Ganglion cell-inner plexiform layer and retinal nerve fiber layer thickness according to myopia and optic disc area: a quantitative and three-dimensional analysis. BMC ophthalmology 17:22

doi: 10.1186/s12886-017-0419-1
[66]

Kudsieh B, Fernández-Vigo JI, Flores-Moreno I, Ruiz-Medrano J, Garcia-Zamora M, et al. 2023. Update on the utility of optical coherence tomography in the analysis of the optic nerve head in highly myopic eyes with and without glaucoma. Journal of Clinical Medicine 12:2592

doi: 10.3390/jcm12072592
[67]

Seol BR, Jeoung JW, Park KH. 2015. Glaucoma detection ability of macular ganglion cell-inner plexiform layer thickness in myopic preperimetric glaucoma. Investigative Ophthalmology & Visual Science 56:8306−13

doi: 10.1167/iovs.15-18141
[68]

Zhao Z, Jiang C. 2013. Effect of myopia on ganglion cell complex and peripapillary retinal nerve fibre layer measurements: a Fourier-domain optical coherence tomography study of young Chinese persons. Clinical & Experimental Ophthalmology 41:561−66

doi: 10.1111/ceo.12045
[69]

He J, Chen Q, Yin Y, Zhou H, Fan Y, et al. 2019. Association between retinal microvasculature and optic disc alterations in high myopia. Eye 33:1494−503

doi: 10.1038/s41433-019-0438-7
[70]

Lei J, Fan Y, Wu Y, Yuan S, Ye Y, et al. 2023. Microvascular Alterations of Peripapillary Choriocapillaris in Young Adult High Myopia Detected by Optical Coherence Tomography Angiography. Journal of Personalized Medicine 13:289

doi: 10.3390/jpm13020289
[71]

Lin T, Su L, Lin J, Qiu H. 2021. Study on the optic nerve fiber layer thickness and changes in blood flow in myopic children. International Journal of General Medicine 14:3287−93

doi: 10.2147/IJGM.S317476
[72]

Yaprak AC, Yaprak L. 2021. Retinal microvasculature and optic disc alterations in non-pathological high myopia with optical coherence tomography angiography. Graefe's Archive for Clinical and Experimental Ophthalmology 259:3221−27

doi: 10.1007/s00417-021-05216-x
[73]

Ng DSC, Cheung CYL, Luk FO, Mohamed S, Brelen ME, et al. 2016. Advances of optical coherence tomography in myopia and pathologic myopia. Eye 30:901−16

doi: 10.1038/eye.2016.47
[74]

Spaide RF, Fujimoto JG, Waheed NK. 2015. Image artifacts in optical coherence tomography angiography. Retina 35:2163−80

doi: 10.1097/IAE.0000000000000765
[75]

Fu D, Li M, Zeng L, Shang J, Yu Z, et al. 2021. The role of magnification correction in macular vessel density assessment: a contralateral eye study in anisometropia patients. Annals of Translational Medicine 9:380

doi: 10.21037/atm-20-5698
[76]

Garway-Heath DF, Crabb DP, Bunce C, Lascaratos G, Amalfitano F, et al. 2015. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet 385:1295−304

doi: 10.1016/S0140-6736(14)62111-5
[77]

Fledelius HC, Jacobsen N, Li XQ, Goldschmidt E. 2019. The longitudinal danish high myopia study, cohort 1948: at age 66 years visual ability is only occasionally affected by visual field defects. Acta Ophthalmologica 97:36−43

doi: 10.1111/aos.13820
[78]

Li C, Chen Y, Yang S, Xiong R, Liu R, et al. 2024. Long-term prediction and risk factors for incident visual field defect in nonpathologic high myopia. Investigative Ophthalmology & Visual Science 65(10):43

doi: 10.1167/iovs.65.10.43
[79]

Lin F, Chen S, Song Y, Li F, Wang W, et al. 2022. Classification of Visual field abnormalities in highly myopic eyes without pathologic change. Ophthalmology 129:803−12

doi: 10.1016/j.ophtha.2022.03.001
[80]

Ding X, Chang RT, Guo X, Liu X, Johnson CA, et al. 2016. Visual field defect classification in the Zhongshan Ophthalmic Center-Brien Holden Vision Institute High Myopia Registry Study. British Journal of Ophthalmology 100:1697−702

doi: 10.1136/bjophthalmol-2015-307942
[81]

Ohno-Matsui K, Shimada N, Yasuzumi K, Hayashi K, Yoshida T, et al. 2011. Long-term development of significant visual field defects in highly myopic eyes. American Journal of Ophthalmology 152:256−265.e1

doi: 10.1016/j.ajo.2011.01.052
[82]

Ma F, Dai J, Sun X. 2014. Progress in understanding the association between high myopia and primary open-angle glaucoma. Clinical & Experimental Ophthalmology 42:190−97

doi: 10.1111/ceo.12158
[83]

Mochida S, Yoshida T, Nomura T, Hatake R, Ohno-Matsui K. 2022. Association between peripheral visual field defects and focal lamina cribrosa defects in highly myopic eyes. Japanese Journal of Ophthalmology 66:285−95

doi: 10.1007/s10384-022-00909-0
[84]

Shoeibi N, Moghadas Sharif N, Daneshvar R, Ehsaei A. 2017. Visual field assessment in high myopia with and without tilted optic disc. Clinical & Experimental Optometry 100:690−94

doi: 10.1111/cxo.12511
[85]

Schilling T, Amorim-de-Sousa A, Wong NA, Bahmani H, González-Méijome JM, et al. 2022. Increase in b-wave amplitude after light stimulation of the blind spot is positively correlated with the axial length of myopic individuals. Scientific Reports 12:4785

doi: 10.1038/s41598-022-08319-5
[86]

Liu X, Wang Y, Ying X, Zhang F, Huang J, et al. 2022. Contrast sensitivity is associated with chorioretinal thickness and vascular density of eyes in simple early-stage high myopia. Frontiers in Medicine 9:847817

doi: 10.3389/fmed.2022.847817
[87]

Kader MA. 2012. Electrophysiological study of myopia. Saudi Journal of Ophthalmology 26:91−99

doi: 10.1016/j.sjopt.2011.08.002
[88]

Sachidanandam R, Ravi P, Sen P. 2017. Effect of axial length on full-field and multifocal electroretinograms. Clinical & Experimental Optometry 100:668−75

doi: 10.1111/cxo.12529
[89]

Li S, Li M, Wu J, Li Y, Han J, et al. 2024. Developing and validating a clinlabomics-based machine-learning model for early detection of retinal detachment in patients with high myopia. Journal of Translational Medicine 22:405

doi: 10.1186/s12967-024-05131-9
[90]

Li Y, Feng W, Zhao X, Liu B, Zhang Y, et al. 2022. Development and validation of a deep learning system to screen vision-threatening conditions in high myopia using optical coherence tomography images. British Journal of Ophthalmology 106:633−39

doi: 10.1136/bjophthalmol-2020-317825
[91]

Zhang J, Xiao F, Zou H, Feng R, He J. 2024. Self-supervised learning-enhanced deep learning method for identifying myopic maculopathy in high myopia patients. iScience 27:110566

doi: 10.1016/j.isci.2024.110566
[92]

Zuo H, Huang B, He J, Fang L, Huang M. 2025. Machine learning approaches in high myopia: systematic review and meta-analysis. Journal of Medical Internet Research 27:e57644

doi: 10.2196/57644
[93]

Cheng J, Liu J, Wong DWK, Yin F, Cheung C, et al. Automatic optic disc segmentation with peripapillary atrophy elimination. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Boston, MA, USA. pp. 6224−27. USA: IEEE. doi: 10.1109/IEMBS.2011.6091537

[94]

Lu CK, Tang TB, Laude A, Dhillon B, Murray AF. 2012. Parapapillary atrophy and optic disc region assessment (PANDORA): retinal imaging tool for assessment of the optic disc and parapapillary atrophy. Journal of biomedical optics 17:106010−10

doi: 10.1117/1.JBO.17.10.106010
[95]

Joshi GD, Sivaswamy J, Prashanth R, Krishnadas S. 2012. Detection of peri-papillary atrophy and RNFL defect from retinal images. Image Analysis and Recognition. ICIAR 2012. Lecture Notes in Computer Science. vol 7325. Berlin, Heidelberg: Springer. pp. 400−7. doi: 10.1007/978-3-642-31298-4_47

[96]

Cho BH, Lee DY, Park KA, Oh SY, Moon JH, et al. 2020. Computer-aided recognition of myopic tilted optic disc using deep learning algorithms in fundus photography. BMC ophthalmology 20:407

doi: 10.1186/s12886-020-01657-w
[97]

Ota-Itadani M, Takahashi H, Mao Z, Igarashi-Yokoi T, Yoshida T, et al. 2022. Deep learning-based 3D OCT imaging for detection of lamina cribrosa defects in eyes with high myopia. Scientific Reports 12:22195

doi: 10.1038/s41598-022-26520-4
[98]

Li F, Wang D, Yang Z, Zhang Y, Jiang J, et al. 2024. The AI revolution in glaucoma: Bridging challenges with opportunities. Progress in Retinal and Eye Research 103:101291

doi: 10.1016/j.preteyeres.2024.101291
[99]

Li M, Wan C. 2022. The use of deep learning technology for the detection of optic neuropathy. Quantitative Imaging In Medicine and Surgery 12:2129−43

doi: 10.21037/qims-21-728
[100]

Liu H, Li L, Wormstone IM, Qiao C, Zhang C, et al. 2019. Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs. JAMA Ophthalmology 137:1353−60

doi: 10.1001/jamaophthalmol.2019.3501
[101]

Gende M, de Moura J, Robles P, Fernández-Vigo J, Martínez-de-la-Casa JM, et al. 2024. Circumpapillary OCT-based multi-sector analysis of retinal layer thickness in patients with glaucoma and high myopia. Computerized Medical Imaging and Graphics 118:102464

doi: 10.1016/j.compmedimag.2024.102464
[102]

Shin HJ, Park HYL, Ryu HK, Oh SE, Kim SA, et al. 2024. Clinical characteristics and associated factors to the development of glaucoma in eyes with myopic optic neuropathy. American Journal of Ophthalmology 260:160−71

doi: 10.1016/j.ajo.2024.01.001
[103]

Bikbov MM, Iakupova EM, Gilmanshin TR, Bikbova GM, Kazakbaeva GM, et al. 2023. Prevalence and associations of nonglaucomatous optic nerve atrophy in high myopia: the ural eye and medical study. Ophthalmology 130:1174−81

doi: 10.1016/j.ophtha.2023.07.014
[104]

Liao L, Fang R, Fang F, Zhu XH. 2021. Clinical observations of acute onset of myopic optic neuropathy in a real-world setting. International Journal of Ophthalmology 14:461−67

doi: 10.18240/ijo.2021.03.21
[105]

KhalafAllah MT, Fuchs PA, Nugen F, El Hamdaoui M, Levy AM, et al. 2024. Heterogenous thinning of peripapillary tissues occurs early during high myopia development in juvenile tree shrews. Experimental Eye Research 240:109824

doi: 10.1016/j.exer.2024.109824
[106]

She Z, Beach KM, Hung LF, Ostrin LA, Smith EL III, et al. 2024. Optic nerve head morphology and macula ganglion cell inner plexiform layer thickness in axially anisometropic rhesus monkeys. Investigative Ophthalmology & Visual Science 65:44

doi: 10.1167/iovs.65.10.44
[107]

He HL, Liu YX, Liu H, Zhang X, Song H, et al. 2024. Deep learning-enabled vasculometry depicts phased lesion patterns in high myopia progression. Asia-Pacific Journal of Ophthalmology 13:100086

doi: 10.1016/j.apjo.2024.100086
[108]

Meng J, Song Y, He W, Lu ZL, Chen Y, et al. 2024. A novel artificial intelligence-based classification of highly myopic eyes based on visual function and fundus features. Translational Vision Science & Technology 103:17411

doi: 10.1111/aos.17411
[109]

Yang HK, Kim YJ, Sung JY, Kim DH, Kim KG, et al. 2020. Efficacy for differentiating nonglaucomatous versus glaucomatous optic neuropathy using deep learning systems. American Journal of Ophthalmology 216:140−46

doi: 10.1016/j.ajo.2020.03.035
[110]

Vali M, Mohammadi M, Zarei N, Samadi M, Atapour-Abarghouei A, et al. 2023. Differentiating glaucomatous optic neuropathy from non-glaucomatous optic neuropathies using deep learning algorithms. American Journal of Ophthalmology 252:1−8

doi: 10.1016/j.ajo.2023.02.016