| [1] |
Liu J, Wu MW, Liu CM. 2022. Cereal endosperms: development and storage product accumulation. Annual Review of Plant Biology 73(1):255−91 doi: 10.1146/annurev-arplant-070221-024405 |
| [2] |
Wang H, Huang Y, Xiao Q, Huang X, Li C, et al. 2020. Carotenoids modulate kernel texture in maize by influencing amyloplast envelope integrity. Nature Communications 11(1):5346 doi: 10.1038/s41467-020-19196-9 |
| [3] |
Guo X, Yuan L, Chen H, Sato SJ, Clemente TE, et al. 2013. Nonredundant function of zeins and their correct stoichiometric ratio drive protein body formation in maize endosperm. Plant Physiology 162(3):1359−69 doi: 10.1104/pp.113.218941 |
| [4] |
Liu H, Shi J, Sun C, Gong H, Fan X, et al. 2016. Gene duplication confers enhanced expression of 27-kDa γ-zein for endosperm modification in quality protein maize. Proceedings of the National Academy of Sciences of the United States of America 113(18):4964−69 doi: 10.1073/pnas.1601352113 |
| [5] |
Segal G, Song R, Messing J. 2003. A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165(1):387−97 doi: 10.1093/genetics/165.1.387 |
| [6] |
Wu Y, Messing J. 2014. Proteome balancing of the maize seed for higher nutritional value. Frontiers in Plant Science 5:240 doi: 10.3389/fpls.2014.00240 |
| [7] |
Song R, Messing J. 2002. Contiguous genomic DNA sequence comprising the 19-kD zein gene family from maize. Plant Physiology 130(4):1626−35 doi: 10.1104/pp.012179 |
| [8] |
Hurst P, Schnable JC, Holding DR. 2021. Tandem duplicate expression patterns are conserved between maize haplotypes of the α-zein gene family. Plant Direct 5(9):e346 doi: 10.1002/pld3.346 |
| [9] |
Li C, Song R. 2020. The regulation of zein biosynthesis in maize endosperm. Theoretical and Applied Genetics 133(5):1443−53 doi: 10.1007/s00122-019-03520-z |
| [10] |
Doll NM, Depège-Fargeix N, Rogowsky PM, Widiez T. 2017. Signaling in early maize kernel development. Molecular Plant 10(3):375−88 doi: 10.1016/j.molp.2017.01.008 |
| [11] |
Schmidt RJ, Burr FA, Burr B. 1987. Transposon tagging and molecular analysis of the maize regulatory locus opaque-2. Science 238:960−63 doi: 10.1126/science.2823388 |
| [12] |
Locatelli S, Piatti P, Motto M, Rossi V. 2009. Chromatin and DNA modifications in the Opaque2-mediated regulation of gene transcription during maize endosperm development. The Plant Cell 21(5):1410−27 doi: 10.1105/tpc.109.067256 |
| [13] |
Zhan J, Li G, Ryu CH, Ma C, Zhang S, et al. 2018. Opaque-2 regulates a complex gene network associated with cell differentiation and storage functions of maize endosperm. The Plant Cell 30(10):2425−46 doi: 10.1105/tpc.18.00392 |
| [14] |
Li C, Yue Y, Chen H, Qi W, Song R. 2018. The ZmbZIP22 transcription factor regulates 27-kD γ-zein gene transcription during maize endosperm development. The Plant Cell 30(10):2402−24 doi: 10.1105/tpc.18.00422 |
| [15] |
Qiao Z, Qi W, Wang Q, Feng YN, Yang Q, et al. 2016. ZmMADS47 regulates zein gene transcription through interaction with Opaque2. PLoS Genetics 12(4):e1005991 doi: 10.1371/journal.pgen.1005991 |
| [16] |
Zhang Z, Zheng X, Yang J, Messing J, Wu Y. 2016. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proceedings of the National Academy of Sciences of the United States of America 113(39):10842−47 doi: 10.1073/pnas.1613721113 |
| [17] |
Yang J, Ji C, Wu Y. 2016. Divergent transactivation of maize storage protein zein genes by the transcription factors Opaque2 and OHPs. Genetics 204(2):581−91 doi: 10.1534/genetics.116.192385 |
| [18] |
Zhang Z, Dong J, Ji C, Wu Y, Messing J. 2019. NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proceedings of the National Academy of Sciences of the United States of America 116(23):11223−28 doi: 10.1073/pnas.1904995116 |
| [19] |
Chen E, Yu H, He J, Peng D, Zhu P, et al. 2023. The transcription factors ZmNAC128 and ZmNAC130 coordinate with Opaque2 to promote endosperm filling in maize. The Plant Cell 35(11):4066−90 doi: 10.1093/plcell/koad215 |
| [20] |
Feng F, Qi W, Lv Y, Yan S, Xu L, et al. 2018. OPAQUE11 is a central hub of the regulatory network for maize endosperm development and nutrient metabolism. The Plant Cell 30(2):375−96 doi: 10.1105/tpc.17.00616 |
| [21] |
Yang T, Guo L, Ji C, Wang H, Wang J, et al. 2021. The B3 domain-containing transcription factor ZmABI19 coordinates expression of key factors required for maize seed development and grain filling. The Plant Cell 33(1):104−28 doi: 10.1093/plcell/koaa008 |
| [22] |
Yoon J, Cho LH, Tun W, Jeon JS, An G. 2021. Sucrose signaling in higher plants. Plant Science 302:110703 doi: 10.1016/j.plantsci.2020.110703 |
| [23] |
Ruan YL. 2014. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology 65(1):33−67 doi: 10.1146/annurev-arplant-050213-040251 |
| [24] |
Li Y, Yu G, Lv Y, Long T, Li P, et al. 2018. Combinatorial interaction of two adjacent cis-active promoter regions mediates the synergistic induction of Bt2 gene by sucrose and ABA in maize endosperm. Plant Science 274:332−40 doi: 10.1016/j.plantsci.2018.06.003 |
| [25] |
Li C, Qi W, Liang Z, Yang X, Ma Z, et al. 2020. A SnRK1-ZmRFWD3-Opaque2 signaling axis regulates diurnal nitrogen accumulation in maize seeds. The Plant Cell 32(9):2823−41 doi: 10.1105/tpc.20.00352 |
| [26] |
Ren XD, Liu HM, Liu YH, Hu YF, Zhang JJ, et al. 2015. Influence of sugars and hormones on the genes involved in sucrose metabolism in maize endosperms. Genetics and Molecular Research 14(1):1671−78 doi: 10.4238/2015.March.6.13 |
| [27] |
Chen XM, Wang ZW, Liang XG, Li FY, Li BB, et al. 2024. Incomplete filling in the basal region of maize endosperm: timing of development of starch synthesis and cell vitality. The Plant Journal 120(3):1142−58 doi: 10.1111/tpj.17043 |
| [28] |
Huang H, Xie S, Xiao Q, Wei B, Zheng L, et al. 2016. Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, ZmEREB156. Scientific Reports 6:27590 doi: 10.1038/srep27590 |
| [29] |
Yang T, Huang Y, Liao L, Wang S, Zhang H, et al. 2024. Sucrose-associated SnRK1a1-mediated phosphorylation of Opaque2 modulates endosperm filling in maize. Molecular Plant 17(5):788−806 doi: 10.1016/j.molp.2024.04.004 |
| [30] |
Wenzler HC, Mignery GA, Fisher LM, Park WD. 1989. Analysis of a chimeric class-I patatin-GUS gene in transgenic potato plants: high-level expression in tubers and sucrose-inducible expression in cultured leaf and stem explants. Plant Molecular Biology 12(1):41−50 doi: 10.1007/BF00017446 |
| [31] |
Cheng WH, Taliercio EW, Chourey PS. 1996. The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. The Plant Cell 8(6):971−83 doi: 10.2307/3870209 |
| [32] |
Shen Y, Li S, Jiang Z, Ma L, Lin H, et al. 2012. Overexpression of an Incw2 gene in endosperm improved yield related traits in maize. Maydica 57:147−53 |
| [33] |
Wei YM, Wang BH, Shao DJ, Yan RY, Wu JW, et al. 2023. Defective kernel 66 encodes a GTPase essential for kernel development in maize. Journal of Experimental Botany 74(18):5694−708 doi: 10.1093/jxb/erad289 |
| [34] |
Zobrist JD, Martin-Ortigosa S, Lee K, Azanu MK, Ji Q, et al. 2021. Transformation of teosinte (Zea mays ssp. parviglumis) via biolistic bombardment of seedling-derived callus tissues. Frontiers in Plant Science 12:773419 doi: 10.3389/fpls.2021.773419 |
| [35] |
Guo D, Zhang J, Wang X, Han X, Wei B, et al. 2015. The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating rax genes in Arabidopsis. The Plant Cell 27(11):3112−27 doi: 10.1105/tpc.15.00829 |
| [36] |
Ning L, Wang Y, Shi X, Zhou L, Ge M, et al. 2023. Nitrogen-dependent binding of the transcription factor PBF1 contributes to the balance of protein and carbohydrate storage in maize endosperm. The Plant Cell 35(1):409−34 doi: 10.1093/plcell/koac302 |
| [37] |
Ren RC, Lu X, Zhao YJ, Wei YM, Wang LL, et al. 2019. Pentatricopeptide repeat protein DEK40 is required for mitochondrial function and kernel development in maize. Journal of Experimental Botany 70(21):6163−79 doi: 10.1093/jxb/erz391 |
| [38] |
Sosso D, Luo D, Li QB, Sasse J, Yang J, et al. 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics 47(12):1489−93 doi: 10.1038/ng.3422 |
| [39] |
LeClere S, Schmelz EA, Chourey PS. 2010. Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiology 153(1):306−18 doi: 10.1104/pp.110.155226 |
| [40] |
Chen Q, Xu X, Xu D, Zhang H, Zhang C, et al. 2019. WRKY18 and WRKY53 coordinate with HISTONE ACETYLTRANSFERASE1 to regulate rapid responses to sugar. Plant Physiology 180(4):2212−26 doi: 10.1104/pp.19.00511 |
| [41] |
Jain M, Chourey PS, Li QB, Pring DR. 2008. Expression of cell wall invertase and several other genes of sugar metabolism in relation to seed development in sorghum (Sorghum bicolor). Journal of Plant Physiology 165(3):331−44 doi: 10.1016/j.jplph.2006.12.003 |
| [42] |
Shen S, Ma S, Chen XM, Yi F, Li BB, et al. 2022. A transcriptional landscape underlying sugar import for grain set in maize. The Plant Journal 110(1):228−42 doi: 10.1111/tpj.15668 |
| [43] |
Yang B, Wang J, Yu M, Zhang M, Zhong Y, et al. 2022. The sugar transporter ZmSUGCAR1 of the nitrate transporter 1/peptide transporter family is critical for maize grain filling. The Plant Cell 34(11):4232−54 doi: 10.1093/plcell/koac256 |
| [44] |
Wang Q, Wang M, Chen J, Qi W, Lai J, et al. 2022. ENB1 encodes a cellulose synthase 5 that directs synthesis of cell wall ingrowths in maize basal endosperm transfer cells. The Plant Cell 34(3):1054−74 doi: 10.1093/plcell/koab312 |
| [45] |
Zhang M, Kong D, Wang H. 2023. Genomic landscape of maize domestication and breeding improvement. Seed Biology 2:9 doi: 10.48130/SeedBio-2023-0009 |
| [46] |
Chourey PS, Jain M, Li QB, Carlson SJ. 2006. Genetic control of cell wall invertases in developing endosperm of maize. Planta 223(2):159−67 doi: 10.1007/s00425-005-0039-5 |
| [47] |
LeClere S, Schmelz EA, Chourey PS. 2008. Cell wall invertase-deficient miniature1 kernels have altered phytohormone levels. Phytochemistry 69(3):692−99 doi: 10.1016/j.phytochem.2007.09.011 |
| [48] |
Lowe J, Nelson OE. 1946. Miniature seed-a study in the development of a defective caryopsis in maize. Genetics 31(5):525−33 doi: 10.1093/genetics/31.5.525 |
| [49] |
Rijavec T, Kovač M, Kladnik A, Chourey PS, Dermastia M. 2009. A comparative study on the role of cytokinins in caryopsis development in the maize miniature1 seed mutant and its wild type. Journal of Integrative Plant Biology 51(9):840−49 doi: 10.1111/j.1744-7909.2009.00863.x |
| [50] |
Lu CA, Ho TD, Ho SL, Yu SM. 2002. Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of α-amylase gene expression. The Plant Cell 14(8):1963−80 doi: 10.1105/tpc.001735 |
| [51] |
Wang HJ, Wan AR, Hsu CM, Lee KW, Yu SM, et al. 2007. Transcriptomic adaptations in rice suspension cells under sucrose starvation. Plant Molecular Biology 63(4):441−63 doi: 10.1007/s11103-006-9100-4 |
| [52] |
Sun C, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, et al. 2003. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. The Plant Cell 15(9):2076−92 doi: 10.1105/tpc.014597 |
| [53] |
Sun C, Höglund AS, Olsson H, Mangelsen E, Jansson C. 2005. Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: identification of SUSIBA2 as a transcriptional activator in plant sugar signalling. The Plant Journal 44(1):128−38 doi: 10.1111/j.1365-313X.2005.02515.x |