| [1] |
Pasitka L, Cohen M, Ehrlich A, Gildor B, Reuveni E, et al. 2023. Spontaneous immortalization of chicken fibroblasts generates stable, high-yield cell lines for serum-free production of cultured meat. Nature Food 4:35−50 doi: 10.1038/s43016-022-00658-w |
| [2] |
Zhu H, Wu Z, Ding X, Post MJ, Guo R, et al. 2022. Production of cultured meat from pig muscle stem cells. Biomaterials 287:121650 doi: 10.1016/j.biomaterials.2022.121650 |
| [3] |
Post MJ, Levenberg S, Kaplan DL, Genovese N, Fu JA, et al. 2020. Scientific, sustainability and regulatory challenges of cultured meat. Nature Food 1:403−15 |
| [4] |
Tuomisto HL, de Mattos MJT. 2011. Environmental impacts of cultured meat production. Environmental Science & Technology 45:6117−23 doi: 10.1021/es200130u |
| [5] |
Chal J, Pourquié O. 2017. Making muscle: skeletal myogenesis in vivo and in vitro. Development 144:2104−22 doi: 10.1242/dev.151035 |
| [6] |
Fu X, Wang H, Hu P. 2015. Stem cell activation in skeletal muscle regeneration. Cellular and Molecular Life Sciences 72:1663−77 doi: 10.1007/s00018-014-1819-5 |
| [7] |
Ding S, Swennen GNM, Messmer T, Gagliardi M, Molin DGM, et al. 2018. Maintaining bovine satellite cells stemness through p38 pathway. Scientific Reports 8:10808 doi: 10.1038/s41598-018-28746-7 |
| [8] |
Ding S, Wang F, Liu Y, Li S, Zhou G, et al. 2017. Characterization and isolation of highly purified porcine satellite cells. Cell Death Discovery 3:17003 doi: 10.1038/cddiscovery.2017.3 |
| [9] |
Fang J, Li M, Zhang G, Du G, Zhou J, et al. 2022. Vitamin C enhances the ex vivo proliferation of porcine muscle stem cells for cultured meat production. Food & Function 13:5089−101 doi: 10.1039/D1FO04340D |
| [10] |
Li M, Wang D, Fang J, Lei Q, Yan Q, et al. 2022. An efficient and economical way to obtain porcine muscle stem cells for cultured meat production. Food Research International 162:112206 doi: 10.1016/j.foodres.2022.112206 |
| [11] |
Guan X, Zhou J, Du G, Chen J. 2022. Bioprocessing technology of muscle stem cells: implications for cultured meat. Trends in Biotechnology 40:721−34 doi: 10.1016/j.tibtech.2021.11.004 |
| [12] |
Gomez Romero S, Boyle N. 2023. Systems biology and metabolic modeling for cultivated meat: a promising approach for cell culture media optimization and cost reduction. Comprehensive Reviews in Food Science and Food Safety 22:3422−43 doi: 10.1111/1541-4337.13193 |
| [13] |
van der Valk J, Bieback K, Buta C, Cochrane B, Dirks WG, et al. 2018. Fetal Bovine Serum (FBS): past - present - future. Altex-Alternatives To Animal Experimentation 35:99−118 doi: 10.14573/altex.1705101 |
| [14] |
Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, et al. 2011. Chemically defined conditions for human iPSC derivation and culture. Nature Methods 8:424−29 doi: 10.1038/nmeth.1593 |
| [15] |
Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, et al. 2008. The ground state of embryonic stem cell self-renewal. Nature 453:519−23 doi: 10.1038/nature06968 |
| [16] |
Wilkinson AC, Ishida R, Kikuchi M, Sudo K, Morita M, et al. 2019. Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature 571:117−21 doi: 10.1038/s41586-019-1244-x |
| [17] |
Kolkmann AM, Post MJ, Rutjens MAM, van Essen ALM, Moutsatsou P. 2020. Serum-free media for the growth of primary bovine myoblasts. Cytotechnology 72:111−20 doi: 10.1007/s10616-019-00361-y |
| [18] |
Kolkmann AM, Van Essen A, Post MJ, Moutsatsou P. 2022. Development of a chemically defined medium for in vitro expansion of primary bovine satellite cells. Frontiers in Bioengineering and Biotechnology 10:895289 doi: 10.3389/fbioe.2022.895289 |
| [19] |
Stout AJ, Mirliani AB, Rittenberg ML, Shub M, White EC, et al. 2022. Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat. Communications Biology 5:466 doi: 10.1038/s42003-022-03423-8 |
| [20] |
Stout AJ, Rittenberg ML, Shub M, Saad MK, Mirliani AB, et al. 2023. A Beefy-R culture medium: Replacing albumin with rapeseed protein isolates. Biomaterials 296:122092 doi: 10.1016/j.biomaterials.2023.122092 |
| [21] |
Abdian N, Ghasemi-Dehkordi P, Hashemzadeh-Chaleshtori M, Ganji-Arjenaki M, Doosti A, et al. 2015. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF). Cell Tissue Bank 16:487−95 doi: 10.1007/s10561-015-9494-9 |
| [22] |
Yang SY, Goldspink G. 2002. Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Letters 522:156−69 doi: 10.1016/S0014-5793(02)02918-6 |
| [23] |
Gill R, Hitchins L, Fletcher F, Dhoot GK. 2010. Sulf1A and HGF regulate satellite-cell growth. Journal of Cell Science 123:1873−83 doi: 10.1242/jcs.061242 |
| [24] |
Zhu CH, Mouly V, Cooper RN, Mamchaoui K, Bigot A, et al. 2007. Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell 6:515−23 doi: 10.1111/j.1474-9726.2007.00306.x |
| [25] |
Zhu J, Thompson CB. 2019. Metabolic regulation of cell growth and proliferation. Nature Reviews Molecular Cell Biology 20:436−50 doi: 10.1038/s41580-019-0123-5 |
| [26] |
Duran BOS, Góes GA, Zanella BTT, Freire PP, Valente JS, et al. 2019. Ascorbic acid stimulates the in vitro myoblast proliferation and migration of pacu (Piaractus mesopotamicus). Scientific Reports 9:2229 doi: 10.1038/s41598-019-38536-4 |
| [27] |
Eylar E, Rivera-Quinones C, Molina C, Báez I, Molina F, et al. 1993. N-acetylcysteine enhances T cell functions and T cell growth in culture. International Immunology 5:97−101 doi: 10.1093/intimm/5.1.97 |
| [28] |
Pirkmajer S, Chibalin AV. 2011. Serum starvation: caveat emptor. American Journal of Physiology Cell Physiology 301:C272−C279 doi: 10.1152/ajpcell.00091.2011 |
| [29] |
Messmer T, Klevernic I, Furquim C, Ovchinnikova E, Dogan A, et al. 2022. A serum-free media formulation for cultured meat production supports bovine satellite cell differentiation in the absence of serum starvation. Nature Food 3:74−85 doi: 10.1038/s43016-021-00419-1 |
| [30] |
Das M, Rumsey JW, Bhargava N, Gregory C, Riedel L, et al. 2009. Developing a novel serum-free cell culture model of skeletal muscle differentiation by systematically studying the role of different growth factors in myotube formation. In Vitro Cell Dev Biol Anim 45:378−87 doi: 10.1007/s11626-009-9192-7 |
| [31] |
Mamchaoui K, Trollet C, Bigot A, Negroni E, Chaouch S, et al. 2011. Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skeletal Muscle 1:34 doi: 10.1186/2044-5040-1-34 |
| [32] |
Mademtzoglou D, Relaix F. 2022. From cyclins to CDKIs: Cell cycle regulation of skeletal muscle stem cell quiescence and activation. Experimental Cell Research 420:113275 doi: 10.1016/j.yexcr.2022.113275 |
| [33] |
Kim WY, Sharpless NE. 2006. The regulation of INK4/ARF in cancer and aging. Cell 127:265−75 doi: 10.1016/j.cell.2006.10.003 |
| [34] |
LaPak KM, Burd CE. 2014. The molecular balancing Act of p16INK4a in cancer and aging. Molecular Cancer Research 12:167−83 doi: 10.1158/1541-7786.MCR-13-0350 |
| [35] |
Dyson NJ. 2016. RB1: a prototype tumor suppressor and an enigma. Genes & Development 30:1492−502 doi: 10.1101/gad.282145.116 |
| [36] |
Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, et al. 2011. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232−36 doi: 10.1038/nature10600 |
| [37] |
Sousa-Victor P, Gutarra S, Garcia-Prat L, Rodriguez-Ubreva J, Ortet L, et al. 2014. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506:316−21 doi: 10.1038/nature13013 |
| [38] |
Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, et al. 2016. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530:184−89 doi: 10.1038/nature16932 |
| [39] |
Zhao Z, Fowle H, Valentine H, Liu Z, Tan Y, et al. 2021. Immortalization of human primary prostate epithelial cells via CRISPR inactivation of the CDKN2A locus and expression of telomerase. Prostate Cancer and Prostatic Diseases 24:233−43 doi: 10.1038/s41391-020-00274-4 |
| [40] |
Lei Q, Li M, Du G, Zhou J, Guan X. 2022. An effective cytokine combination for ex vivo expansion of porcine muscle stem cells. Food Bioscience 46:101571 doi: 10.1016/j.fbio.2022.101571 |
| [41] |
Fang J, Sia J, Soto J, Wang P, Li LK, et al. 2021. Skeletal muscle regeneration via the chemical induction and expansion of myogenic stem cells in situ or in vitro. Nature Biomedical Engineering 5:864−79 doi: 10.1038/s41551-021-00696-y |
| [42] |
Liu Z, Lin L, Zhu H, Wu Z, Ding X, et al. 2021. YAP promotes cell proliferation and stemness maintenance of porcine muscle stem cells under high-density condition. Cells 10:3069 doi: 10.3390/cells10113069 |
| [43] |
Zhou GH, Wu ZY, Ding SJ, Tang CB. 200. A chemically defined culture medium for in vitro proliferation of myogenic cells. C.N. patent 202210105530 |
| [44] |
Zammit PS, Relaix F, Nagata Y, Ruiz AP, Collins CA, et al. 2006. Pax7 and myogenic progression in skeletal muscle satellite cells. Journal of Cell Science 119:1824−32 doi: 10.1242/jcs.02908 |
| [45] |
Zammit PS. 2017. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Seminars in Cell & Developmental Biology 72:19−32 doi: 10.1016/j.semcdb.2017.11.011 |
| [46] |
Shea KL, Xiang WY, LaPorta VS, Licht JD, Keller C, et al. 2010. Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell 6:117−29 doi: 10.1016/j.stem.2009.12.015 |
| [47] |
Fu X, Xiao J, Wei Y, Li S, Liu Y, et al. 2015. Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Research 25:655−73 doi: 10.1038/cr.2015.58 |
| [48] |
Zhou GH, Wu ZY, Xu XL, Ding SJ, Li HX. 2021. A chemically defined medium for in vitro differentiation of muscle stem cells. C. N. patent CN 202011558188.3:1−15 |
| [49] |
Zhou GH, Wu ZY, Ding SJ, Tang CB, Li HM. 2023. A modified chemically defined culture medium for inducing adipogenic differentiation in vitro and its application. C. N. patent CN 202211618122.8:1−32 |
| [50] |
Dohmen RGJ, Hubalek S, Melke J, Messmer T, Cantoni F, et al. 2022. Muscle-derived fibro-adipogenic progenitor cells for production of cultured bovine adipose tissue. NPJ Science of Food 6:6 doi: 10.1038/s41538-021-00122-2 |
| [51] |
Zheng YY, Chen Y, Zhu HZ, Li CB, Song WJ, et al. 2022. Production of cultured meat by culturing porcine smooth muscle cells in vitro with food grade peanut wire-drawing protein scaffold. Food Research International 159:111561 doi: 10.1016/j.foodres.2022.111561 |
| [52] |
Zheng YY, Shi YF, Zhu HZ, Ding SJ, Zhou GH. 2022. Quality evaluation of cultured meat with plant protein scaffold. Food Research International 161:111818 doi: 10.1016/j.foodres.2022.111818 |
| [53] |
Song WJ, Liu PP, Zheng YY, Meng ZQ, Zhu HZ, et al. 2022. Production of cultured fat with peanut wire-drawing protein scaffold and quality evaluation based on texture and volatile compounds analysis. Food Research International 160:111636 doi: 10.1016/j.foodres.2022.111636 |
| [54] |
Zhang G, Zhao X, Li X, Du G, Zhou J, et al. 2020. Challenges and possibilities for bio-manufacturing cultured meat. Trends in Food Science & Technology 97:443−50 |
| [55] |
Cosenza Z, Block DE, Baar K. 2021. Optimization of muscle cell culture media using nonlinear design of experiments. Biotechnology Journal 16:e2100228 doi: 10.1002/biot.202100228 |
| [56] |
Hashizume T, Ozawa Y, Ying BW. 2023. Employing active learning in the optimization of culture medium for mammalian cells. NPJ Systems Biology and Applications 9:20 doi: 10.1038/s41540-023-00284-7 |
| [57] |
Maqsood MI, Matin MM, Bahrami AR, Ghasroldasht MM. 2013. Immortality of cell lines: challenges and advantages of establishment. Cell Biology International 37:1038−45 doi: 10.1002/cbin.10137 |
| [58] |
Soice E, Johnston J. 2021. Immortalizing cells for human consumption. International Journal of Molecular Sciences 22:11660 doi: 10.3390/ijms222111660 |
| [59] |
Caliri AW, Tommasi S, Bates SE, Besaratinia A. 2020. Spontaneous and photosensitization-induced mutations in primary mouse cells transitioning through senescence and immortalization. Journal of Biological Chemistry 295:9974−85 doi: 10.1074/jbc.RA120.014465 |
| [60] |
Ayala-Cuellar AP, Kim CW, Hwang KA, Kang JH, Lee G, et al. 2019. Characterization of canine adipose tissue-derived mesenchymal stem cells immortalized by SV40-T retrovirus for therapeutic use. Journal of Cellular Physiology 234:16630−42 doi: 10.1002/jcp.28338 |
| [61] |
Chen Y, Hu S, Wang M, Zhao B, Yang N, et al. 2019. Characterization and Establishment of an Immortalized Rabbit Melanocyte Cell Line Using the SV40 Large T Antigen. International Journal of Molecular Sciences 20:4874 doi: 10.3390/ijms20194874 |
| [62] |
Liu TM, Ng WM, Tan HS, Vinitha D, Yang Z, et al. 2013. Molecular basis of immortalization of human mesenchymal stem cells by combination of p53 knockdown and human telomerase reverse transcriptase overexpression. Stem Cells and Development 22:268−78 doi: 10.1089/scd.2012.0222 |
| [63] |
Pajcini KV, Corbel SY, Sage J, Pomerantz JH, Blau HM. 2010. Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle. Cell Stem Cell 7:198−213 doi: 10.1016/j.stem.2010.05.022 |
| [64] |
Simsa R, Yuen J, Stout A, Rubio N, Fogelstrand P, et al. 2019. Extracellular heme proteins influence bovine myosatellite cell proliferation and the color of cell-based meat. Foods 8:521 doi: 10.3390/foods8100521 |