[1]

Brinkman JE, Reddy V, Sharma S. 2025. Physiology of sleep. Treasure Island (FL): StatPearls Publishing. www.ncbi.nlm.nih.gov/books/NBK482512

[2]

Taylor SA Jr. 2023. Clinical Evaluation of the Sleepy and Sleepless Patient. CONTINUUM: Lifelong Learning in Neurology 29:1031−44

doi: 10.1212/con.0000000000001281
[3]

Najjar RP, Sia JT, Lamoureux EL, Man REK. 2023. Associations between sleep and eye diseases: the concurrent promotion of sleep health and tackling knowledge gaps is key for better public health outcomes. Clinical & Experimental Ophthalmology 51:498−99

doi: 10.1111/ceo.14243
[4]

Baranwal N, Yu PK, Siegel NS. 2023. Sleep physiology, pathophysiology, and sleep hygiene. Progress in Cardiovascular Diseases 77:59−69

doi: 10.1016/j.pcad.2023.02.005
[5]

Leproult R, Van Cauter E. 2010. Role of sleep and sleep loss in hormonal release and metabolism. Endocrine Development 17:11−21

doi: 10.1159/000262524
[6]

Boivin DB, Boudreau P, Kosmadopoulos A. 2022. Disturbance of the circadian system in shift work and its health impact. Journal of Biological Rhythms 37:3−28

doi: 10.1177/07487304211064218
[7]

Anton N, Ciuntu RE, Chiseliţă D, Danielescu C, Alexa AI, et al. 2021. Ocular Implications in Patients with Sleep Apnea. Applied Sciences 11:10086

doi: 10.3390/app112110086
[8]

Lee SSY, Nilagiri VK, Mackey DA. 2022. Sleep and eye disease: a review. Clinical & Experimental Ophthalmology 50:334−44

doi: 10.1111/ceo.14071
[9]

Memar P, Faradji F. 2018. A novel multi-class EEG-based sleep stage classification system. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26:84−95

doi: 10.1109/TNSRE.2017.2776149
[10]

El Shakankiry HM. 2011. Sleep physiology and sleep disorders in childhood. Nature and Science of Sleep 3:101−14

doi: 10.2147/NSS.S22839
[11]

Peever J, Fuller PM. 2017. The Biology of REM Sleep. Current Biology 27:R1237−R1248

doi: 10.1016/j.cub.2017.10.026
[12]

Gottesmann C. 2002. GABA mechanisms and sleep. Neuroscience 111:231−9

doi: 10.1016/S0306-4522(02)00034-9
[13]

Steiger A. 2003. Sleep and endocrine regulation. Frontiers in Bioscienc 8:S358−S376

doi: 10.2741/1055
[14]

van Maanen MA, Lebre MC, van der Poll T, LaRosa GJ, Elbaum D, et al. 2009. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis & Rheumatism 60:114−22

doi: 10.1002/art.24177
[15]

Hale L, Troxel W, Buysse DJ. 2020. Sleep health: an opportunity for public health to address health equity. Annual Review of Public Health 41:81−99

doi: 10.1146/annurev-publhealth-040119-094412
[16]

Centers for Disease Control and Prevention (CDC). 2011. Effect of short sleep duration on daily activities--United States, 2005−2008. MMWR Morbidity and Mortality Weekly Report 60:239−42

[17]

Ellis JG, Perlis ML, Neale LF, Espie CA, Bastien CH. 2012. The natural history of insomnia: focus on prevalence and incidence of acute insomnia. Journal of Psychiatric Research 46:1278−85

doi: 10.1016/j.jpsychires.2012.07.001
[18]

Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, et al. 2019. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. The Lancet Respiratory Medicine 7:687−98

doi: 10.1016/S2213-2600(19)30198-5
[19]

Jiao X, Wu M, Lu D, Gu J, Li Z. 2019. Transcriptional profiling of daily patterns of mRNA expression in the C57BL/6J mouse Cornea. Current Eye Research 44:1054−66

doi: 10.1080/02713683.2019.1625408
[20]

He J, Jiao X, Sun X, Huang Y, Xu P, et al. 2021. Short-term high fructose intake impairs diurnal oscillations in the murine cornea. Investigative Ophthalmology & Visual Science 62(10):22

doi: 10.1167/iovs.62.10.22
[21]

Sandvig KU, Haaskjold E, Refsum SB. 1994. Time dependency in the regenerative response to injury of the rat corneal epithelium. Chronobiology International 11:173−9

doi: 10.3109/07420529409057237
[22]

Xue Y, Liu P, Wang H, Xiao C, Lin C, et al. 2017. Modulation of circadian rhythms affects corneal epithelium renewal and repair in mice. Investigative Ophthalmology & Visual Science 58:1865−74

doi: 10.1167/iovs.16-21154
[23]

Song F, Xue Y, Dong D, Liu J, Fu T, et al. 2016. Insulin restores an altered corneal epithelium circadian rhythm in mice with streptozotocin-induced type 1 diabetes. Scientific Reports 6:32871

doi: 10.1038/srep32871
[24]

Hargrave A, Courson JA, Pham V, Landry P, Magadi S, et al. 2020. Corneal dysfunction precedes the onset of hyperglycemia in a mouse model of diet-induced obesity. PLoS One 15:e0238750

doi: 10.1371/journal.pone.0238750
[25]

Pal-Ghosh S, Tadvalkar G, Karpinski BA, Stepp MA. 2020. Diurnal control of sensory axon growth and shedding in the mouse cornea. Investigative Ophthalmology & Visual Science 61:1

doi: 10.1167/iovs.61.11.1
[26]

Xue Y, Xu P, Hu Y, Liu S, Yan R, et al. 2024. Stress systems exacerbate the inflammatory response after corneal abrasion in sleep-deprived mice via the IL-17 signaling pathway. Mucosal Immunology 17:323−45

doi: 10.1016/j.mucimm.2024.02.009
[27]

Aroca-Crevillén A, Adrover JM, Hidalgo A. 2020. Circadian features of neutrophil biology. Frontiers in Immunology 11:576

doi: 10.3389/fimmu.2020.00576
[28]

Lange T, Born J. 2011. The immune recovery function of sleep - tracked by neutrophil counts. Brain, Behavior, and Immunity 25:14−15

doi: 10.1016/j.bbi.2010.08.008
[29]

Wright KP Jr., Drake AL, Frey DJ, Fleshner M, Desouza CA, et al. 2015. Influence of sleep deprivation and circadian misalignment on Cortisol, inflammatory markers, and cytokine balance. Brain, Behavior, and Immunity 47:24−34

doi: 10.1016/j.bbi.2015.01.004
[30]

Xue W, Lin S, Chen X, Jia Y, Fang X, et al. 2021. In vivo noninvasive imaging and quantitative analysis of iris vessels. Ophthalmic Research 64:754−61

doi: 10.1159/000516553
[31]

Liu JH, Gallar J, Loving RT. 1996. Endogenous circadian rhythm of basal pupil size in rabbits. Investigative Ophthalmology & Visual Scienc 37:2345−9

[32]

Werne A, Harris A, Moore D, BenZion I, Siesky B. 2008. The circadian variations in systemic blood pressure, ocular perfusion pressure, and ocular blood flow: risk factors for glaucoma? Survey of Ophthalmology 53:559−67

doi: 10.1016/j.survophthal.2008.08.021
[33]

Liu JH, Kripke DF, Hoffman RE, Twa MD, Loving RT, et al. 1998. Nocturnal elevation of intraocular pressure in young adults. Investigative Ophthalmology & Visual Science 39:2707−12

[34]

Tsuchiya S, Higashide T, Toida K, Sugiyama K. 2017. The role of beta-adrenergic receptors in the regulation of circadian intraocular pressure rhythm in mice. Current Eye Research 42:1013−17

doi: 10.1080/02713683.2016.1264605
[35]

Brubaker RF. 1997. Clinical measurements of aqueous dynamics Implications for addressing glaucoma. In Current Topics in Membranes, ed. Civan MM. vol. 45. USA: Academic Press. pp. 233−84. doi: 10.1016/s0070-2161(08)60249-x

[36]

Coca-Prados M, Escribano J. 2007. New perspectives in aqueous humor secretion and in glaucoma: the ciliary body as a multifunctional neuroendocrine gland. Progress in Retinal and Eye Research 26:239−62

doi: 10.1016/j.preteyeres.2007.01.002
[37]

Ikegami K, Shigeyoshi Y, Masubuchi S. 2020. Circadian regulation of IOP rhythm by dual pathways of glucocorticoids and the sympathetic nervous system. Investigative Ophthalmology & Visual Science 61:26

doi: 10.1167/iovs.61.3.26
[38]

Tsuchiya S, Sugiyama K, Van Gelder RN. 2018. Adrenal and glucocorticoid effects on the circadian rhythm of murine intraocular pressure. Investigative Ophthalmology & Visual Science 59:5641−47

doi: 10.1167/iovs.18-24785
[39]

Lim JC, Suzuki-Kerr H, Nguyen TX, Lim CJJ, Poulsen RC. 2022. Redox homeostasis in ocular tissues: circadian regulation of glutathione in the lens? Antioxidants 11:1516

doi: 10.3390/antiox11081516
[40]

Díaz-Muñoz M, Hernández-Muñoz R, Suárez J, Chagoya de Sánchez V. 1985. Day-night cycle of lipid peroxidation in rat cerebral cortex and their relationship to the glutathione cycle and superoxide dismutase activity. Neuroscience 16:859−63

doi: 10.1016/0306-4522(85)90100-9
[41]

Chhunchha B, Kubo E, Singh DP. 2020. Clock protein Bmal1 and Nrf2 cooperatively control aging or oxidative response and redox homeostasis by regulating rhythmic expression of Prdx6. Cells 9:1861

doi: 10.3390/cells9081861
[42]

Cahill GM, Hasegawa M. 1997. Circadian oscillators in vertebrate retinal photoreceptor cells. Biological Signals 6:191−200

doi: 10.1159/000109129
[43]

McMahon DG, Iuvone PM, Tosini G. 2014. Circadian organization of the mammalian retina: from gene regulation to physiology and diseases. Progress in Retinal and Eye Research 39:58−76

doi: 10.1016/j.preteyeres.2013.12.001
[44]

Baba K, Goyal V, Tosini G. 2022. Circadian regulation of retinal pigment epithelium function. International Journal of Molecular Sciences 23:2699

doi: 10.3390/ijms23052699
[45]

Basinger SF, Hollyfield JG. 1980. Control of rod shedding in the frog retina. Neurochemistry International 1C:81−92

doi: 10.1016/0197-0186(80)90052-2
[46]

Bassi CJ, Powers MK. 1990. Shedding of rod outer segments is light-driven in goldfish. Investigative Ophthalmology & Visual Science 31:2314−19

[47]

Tosini G, Pozdeyev N, Sakamoto K, Iuvone PM. 2008. The circadian clock system in the mammalian retina. BioEssays 30:624−33

doi: 10.1002/bies.20777
[48]

Tosini G, Baba K, Hwang CK, Iuvone PM. 2012. Melatonin: an underappreciated player in retinal physiology and pathophysiology. Experimental Eye Research 103:82−9

doi: 10.1016/j.exer.2012.08.009
[49]

Liang FQ, Aleman TS, ZaixinYang, Cideciyan AV, Jacobson SG, et a l. 2001. Melatonin delays photoreceptor degeneration in the rds/rds mouse. Neuroreport 12:1011−14

doi: 10.1097/00001756-200104170-00029
[50]

Jordan A, Baum J. 1980. Basic tear flow. Does it exist? Ophthalmology 87:920−30

doi: 10.1016/S0161-6420(80)35143-9
[51]

Terry JE, Hill RM. 1978. Human tear osmotic pressure: diurnal variations and the closed eye. Archives of Ophthalmology 96:120−22

doi: 10.1001/archopht.1978.03910050076019
[52]

Carney LG, Hill RM. 1976. Human tear pH: diurnal variations. Archives of Ophthalmology 94:821−24

doi: 10.1001/archopht.1976.03910030405011
[53]

Oncel BA, Pinarci E, Akova YA. 2012. Diurnal variation of the tear osmolarity in normal subjects measured by a new microchip system. European Journal of Ophthalmology 22(Suppl 7):S1−S4

doi: 10.5301/ejo.5000084
[54]

Fullard RJ, Carney LG. 1984. Diurnal variation in human tear enzymes. Experimental Eye Research 38:15−26

doi: 10.1016/0014-4835(84)90134-9
[55]

Fullard RJ, Carney LG. 1985. Human tear enzyme changes as indicators of the corneal response to anterior hypoxia. Acta Ophthalmologica 63:678−83

doi: 10.1111/j.1755-3768.1985.tb01580.x
[56]

Arroyo CA, Byambajav M, Fernández I, Martin E, González-García MJ, et al. 2022. Diurnal variation on tear stability and correlation with tear cytokine concentration. Contact Lens and Anterior Eye 45:101705

doi: 10.1016/j.clae.2022.101705
[57]

Uchino E, Sonoda S, Kinukawa N, Sakamoto T. 2006. Alteration pattern of tear cytokines during the course of a day: diurnal rhythm analyzed by multicytokine assay. Cytokine 33:36−40

doi: 10.1016/j.cyto.2005.11.013
[58]

Runström G, Mann A, Tighe B. 2013. The fall and rise of tear albumin levels: a multifactorial phenomenon. The Ocular Surface 11:165−80

doi: 10.1016/j.jtos.2013.03.001
[59]

Tomlinson A, Cedarstaff TH. 1992. Diurnal variation in human tear evaporation. Journal of The British Contact Lens Association 15:77−79

doi: 10.1016/0141-7037(92)80043-Y
[60]

Murube J. 2008. REM sleep: tear secretion and dreams. The Ocular Surface 6:2−8

doi: 10.1016/S1542-0124(12)70101-5
[61]

Alevi D, Perry HD, Wedel A, Rosenberg E, Alevi L, et al. 2017. Effect of sleep position on the ocular surface. Cornea 36:567−71

doi: 10.1097/ICO.0000000000001167
[62]

Wong MHY, Lai AH, Singh M, Chew PT. 2013. Sleeping posture and intraocular pressure. Singapore Medical Journal 54:146−48

doi: 10.11622/smedj.2013050
[63]

German AJ, Hall EJ, Day MJ. 1998. Measurement of IgG, IgM and IgA concentrations in canine serum, saliva, tears and bile. Veterinary Immunology and Immunopathology 64:107−21

doi: 10.1016/S0165-2427(98)00132-9
[64]

Horwitz BL, Christensen GR, Ritzmann SR. 1978. Diurnal profiles of tear lysozyme and gamma A globulin. Annals of Ophthalmology 10:75−80

[65]

Tan KO, Sack RA, Holden BA, Swarbrick HA. 1993. Temporal sequence of changes in tear film composition during sleep. Current Eye Research 12:1001−7

doi: 10.3109/02713689309029226
[66]

Gorbet M, Postnikoff C, Williams S. 2015. The noninflammatory phenotype of neutrophils from the closed-eye environment: a flow cytometry analysis of receptor expression. Investigative Ophthalmology & Visual Science 56:4582−91

doi: 10.1167/iovs.14-15750
[67]

Sack RA, Beaton A, Sathe S, Morris C, Willcox M, et al. 2000. Towards a closed eye model of the pre-ocular tear layer. Progress in Retinal and Eye Research 19:649−68

doi: 10.1016/S1350-9462(00)00006-9
[68]

Huang S, Jiao X, Lu D, Pei X, Qi D, et al. 2021. Light cycle phase advance as a model for jet lag reprograms the circadian rhythms of murine extraorbital lacrimal glands. The Ocular Surfac 20:95−114

doi: 10.1016/j.jtos.2021.02.001
[69]

Jiao X, Lu D, Pei X, Qi D, Huang S, et al. 2020. Type 1 diabetes mellitus impairs diurnal oscillations in murine extraorbital lacrimal glands. The Ocular Surface 18:438−52

doi: 10.1016/j.jtos.2020.04.013
[70]

Li S, Ning K, Zhou J, Guo Y, Zhang H, et al. 2018. Sleep deprivation disrupts the lacrimal system and induces dry eye disease. Experimental & Molecular Medicine 50:e451

doi: 10.1038/emm.2017.285
[71]

Huang S, Si H, Liu J, Qi D, Pei X, et al. 2022. Sleep loss causes dysfunction in murine extraorbital lacrimal glands. Investigative Ophthalmology & Visual Science 63:19

doi: 10.1167/iovs.63.6.19
[72]

Miglis MG. 2016. Autonomic dysfunction in primary sleep disorders. Sleep Medicine 19:40−49

doi: 10.1016/j.sleep.2015.10.001
[73]

Kim H, Jung HR, Kim JB, Kim DJ. 2022. Autonomic dysfunction in sleep disorders: from neurobiological basis to potential therapeutic approaches. Journal of Clinical Neurology 18:140−51

doi: 10.3988/jcn.2022.18.2.140
[74]

Jiao X, Pei X, Lu D, Qi D, Huang S, et al. 2021. Microbial Reconstitution Improves Aging-Driven Lacrimal Gland Circadian Dysfunction. The American Journal of Pathology 191:2091−116

doi: 10.1016/j.ajpath.2021.08.006
[75]

Liu J, Si H, Huang D, Lu D, Zou S, et al. 2023. Mechanisms of extraorbital lacrimal gland aging in mice: an integrative analysis of the temporal transcriptome. Investigative Ophthalmology & Visual Science 64:18

doi: 10.1167/iovs.64.12.1
[76]

Wang S, He X, Li Q, Zhang Y, Hu J, et al. 2022. Obstructive sleep apnea affects lacrimal gland function. Investigative Ophthalmology & Visual Science 63:3

doi: 10.1167/iovs.63.3.3
[77]

Chen Q, Ji C, Zheng R, Yang L, Ren J, et al. 2020. N-palmitoylethanolamine maintains local lipid homeostasis to relieve sleep deprivation-induced dry eye syndrome. Frontiers in Pharmacology 10:1622

doi: 10.3389/fphar.2019.01622
[78]

Onochie OE, Onyejose AJ, Rich CB, Trinkaus-Randall V. 2020. The role of hypoxia in corneal extracellular matrix deposition and cell motility. Anatomical Record 303:1703−16

doi: 10.1002/ar.24110
[79]

Del Castillo LF, Ramírez-Calderón JG, Del Castillo RM, Aguilella-Arzo M, Compañ V. 2020. Corneal relaxation time estimation as a function of tear oxygen tension in human cornea during contact lens wear. Journal of Biomedical Materials Research Part B: Applied Biomaterials 108:14−21

doi: 10.1002/jbm.b.34360
[80]

Levy BH, Tasker JG. 2012. Synaptic regulation of the hypothalamic-pituitary-adrenal axis and its modulation by glucocorticoids and stress. Frontiers in Cellular Neuroscience 6:24

doi: 10.3389/fncel.2012.00024
[81]

Yener NP, Güneş A, Yıldız D. 2023. Analysis of corneal topographic and endothelial cell properties in newly diagnosed obstructive sleep apnea patients: A case-control study. Photodiagnosis and Photodynamic Therapy 43:103593

doi: 10.1016/j.pdpdt.2023.103593
[82]

Liesegang TJ. 2002. Physiologic changes of the cornea with contact lens wear. The CLAO Journa 28:12−27

[83]

Li S, Tang L, Zhou J, Anchouche S, Li D, et al. 2022. Sleep deprivation induces corneal epithelial progenitor cell over-expansion through disruption of redox homeostasis in the tear film. Stem Cell Reports 17:1105−19

doi: 10.1016/j.stemcr.2022.03.017
[84]

Tang L, Wang X, Wu J, Li SM, Zhang Z, et al. 2018. Sleep deprivation induces dry eye through inhibition of PPARα expression in corneal epithelium. Investigative Ophthalmology & Visual Science 59:5494−508

doi: 10.1167/iovs.18-24504
[85]

Mukuno K, Witmer R. 1977. Innervation of melanocytes in human iris. An electron microscopic study. Albrecht Von Graefes Archiv Für Klinische und Experimentelle Ophthalmologie 203:1−8

doi: 10.1007/BF00410042
[86]

Shiba T, Takahashi M, Hori Y, Saishin Y, Sato Y, et al. 2011. Relationship between sleep-disordered breathing and iris and/or angle neovascularization in proliferative diabetic retinopathy cases. American Journal of Ophthalmology 151:604−9

doi: 10.1016/j.ajo.2010.10.002
[87]

Berlucchi G, Moruzzi G, Salvi G, Strata P. 1964. Pupil behavior and ocular movements during synchronized and desynchronized sleep. Archives Italiennes de Biologie 102:230−44

[88]

Ungurean G, Martinez-Gonzalez D, Massot B, Libourel PA, Rattenborg NC. 2021. Pupillary behavior during wakefulness, non-REM sleep, and REM sleep in birds is opposite that of mammals. Current Biology 31:5370−5376.e4

doi: 10.1016/j.cub.2021.09.060
[89]

Perkins JE, Janzen A, Bernhard FP, Wilhelm K, Brien DC, et al. 2021. Saccade, pupil, and blink responses in rapid eye movement sleep behavior disorder. Movement Disorders 36:1720−26

doi: 10.1002/mds.28585
[90]

Yüzgeç Ö, Prsa M, Zimmermann R, Huber D. 2018. Pupil size coupling to cortical states protects the stability of deep sleep via parasympathetic modulation. Current Biology 28:392−400.e3

doi: 10.1016/j.cub.2017.12.049
[91]

Bradley MM, Miccoli L, Escrig MA, Lang PJ. 2008. The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 45:602−7

doi: 10.1111/j.1469-8986.2008.00654.x
[92]

Steinhauer SR, Siegle GJ, Condray R, Pless M. 2004. Sympathetic and parasympathetic innervation of pupillary dilation during sustained processing. International Journal of Psychophysiology 52:77−86

doi: 10.1016/j.ijpsycho.2003.12.005
[93]

Gaddy JR, Rollag MD, Brainard GC. 1993. Pupil size regulation of threshold of light-induced melatonin suppression. The Journal of Clinical Endocrinology and Metabolism 77:1398−401

doi: 10.1210/jcem.77.5.8077340
[94]

Franken P, Dijk DJ. 2024. Sleep and circadian rhythmicity as entangled processes serving homeostasis. Nature Reviews Neuroscience 25:43−59

doi: 10.1038/s41583-023-00764-z
[95]

Hor CN, Yeung J, Jan M, Emmenegger Y, Hubbard J, et al. 2019. Sleep-wake-driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex. Proceedings of the National Academy of Sciences of the United States of America 116:25773−83

doi: 10.1073/pnas.1910590116
[96]

Brzezinski A. 1997. Melatonin in humans. New England Journal of Medicine 336:186−95

doi: 10.1056/NEJM199701163360306
[97]

Bani Issa W, Abdul Rahman H, Albluwi N, Samsudin ABR, Abraham S, et al. 2020. Morning and evening salivary melatonin, sleepiness and chronotype: A comparative study of nurses on fixed day and rotating night shifts. Journal of Advanced Nursing 76:3372−84

doi: 10.1111/jan.14530
[98]

Ren X, Zhou Y, Lu F, Zhai L, Wu H, et al. 2023. Contact lens sensor with anti-jamming capability and high sensitivity for intraocular pressure monitoring. ACS Sensors 8:2691−701

doi: 10.1021/acssensors.3c00542
[99]

Aptel F, Canaud P, Tamisier R, Pépin JL, Mottet B, et al. 2015. Relationship between nocturnal intraocular pressure variations and sleep macrostructure. Investigative Ophthalmology & Visual Science 56:6899−905

doi: 10.1167/iovs.15-17456
[100]

Noël C, Kabo AM, Romanet JP, Montmayeur A, Buguet A. 2001. Twenty-four-hour time course of intraocular pressure in healthy and glaucomatous Africans: relation to sleep patterns. Ophthalmology 108:139−44

doi: 10.1016/S0161-6420(00)00411-5
[101]

Buguet A, Py P, Romanet JP. 1994. 24-hour (nyctohemeral) and sleep-related variations of intraocular pressure in healthy white individuals. American Journal of Ophthalmology 117:342−47

doi: 10.1016/S0002-9394(14)73143-5
[102]

Carnero E, Bragard J, Urrestarazu E, Rivas E, Polo V, et al. 2020. Continuous intraocular pressure monitoring in patients with obstructive sleep apnea syndrome using a contact lens sensor. PLOS One 15:e0229856

doi: 10.1371/journal.pone.0229856
[103]

Mendelsohn AR, Larrick JW. 2013. Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases. Rejuvenation Research 16:518−23

doi: 10.1089/rej.2013.1530
[104]

Hablitz LM, Plá V, Giannetto M, Vinitsky HS, Stæger FF, et al. 2020. Circadian control of brain glymphatic and lymphatic fluid flow. Nature Communications 11:4411

doi: 10.1038/s41467-020-18115-2
[105]

Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR, et al. 2019. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366:628−31

doi: 10.1126/science.aax5440
[106]

Magonio F. 2022. REM phase: An ingenious mechanism to enhance clearance of metabolic waste from the retina. Experimental Eye Research 214:108860

doi: 10.1016/j.exer.2021.108860
[107]

Iwase T, Yamamoto K, Ra E, Murotani K, Matsui S, et al. 2015. Diurnal variations in blood flow at optic nerve head and choroid in healthy eyes: diurnal variations in blood flow. Medicine 94:e519

doi: 10.1097/MD.0000000000000519
[108]

Karlstetter M, Langmann T. 2014. Microglia in the aging retina. Advances in Experimental Medicine and Biology 801:207−12

doi: 10.1007/978-1-4614-3209-8_27
[109]

Joseph A, Power D, Schallek J. 2021. Imaging the dynamics of individual processes of microglia in the living retina in vivo. Biomedical Optics Express 12:6157−83

doi: 10.1364/BOE.426157
[110]

Joseph A, Chu CJ, Feng G, Dholakia K, Schallek J. 2020. Label-free imaging of immune cell dynamics in the living retina using adaptive optics. eLife 9:e60547

doi: 10.7554/eLife.60547
[111]

Huang S, Zhang W, Ba M, Xuan S, Huang D, et al. 2025. Chronic jet lag disrupts circadian rhythms and induces hyperproliferation in murine lacrimal glands via ROS accumulation. Investigative Ophthalmology & Visual Science 66:12

doi: 10.1167/iovs.66.1.12
[112]

Clarkson-Townsend DA, Bales KL, Marsit CJ, Pardue MT. 2021. Light environment influences developmental programming of the metabolic and visual systems in mice. Investigative Ophthalmology & Visual Science 62(4):22

doi: 10.1167/iovs.62.4.22
[113]

Lavie L. 2015. Oxidative stress in obstructive sleep apnea and intermittent hypoxia-revisited-the bad ugly and good: implications to the heart and brain. Sleep Medicine Reviews 20:27−45

[114]

Chaitanya A, Pai VH, Mohapatra AK, Ve RS. 2016. Glaucoma and its association with obstructive sleep apnea: a narrative review. Oman Journal of Ophthalmology 9:125−34

doi: 10.4103/0974-620X.192261
[115]

Faridi O, Park SC, Liebmann JM, Ritch R. 2012. Glaucoma and obstructive sleep apnoea syndrome. Clinical & Experimental Ophthalmology 40:408−19

doi: 10.1111/j.1442-9071.2012.02768.x
[116]

Li X, Zhang Y, Guo T, Liu K, Xu X, et al. 2023. Influence of obstructive sleep apnea syndrome on the contralateral optic nerve in patients with unilateral nonarteritic anterior ischemic optic neuropathy. Journal of Clinical Sleep Medicine 19:347−53

doi: 10.5664/jcsm.10342
[117]

Hayreh SS. 2017. Role of nocturnal arterial hypotension in nonarteritic anterior ischemic optic neuropathy. Journal of Neuro-Ophthalmology 37:350−51

[118]

Heng K, Young BK, Li B, Nies AD, Xia X, et al. 2024. BDNF and cAMP are neuroprotective in a porcine model of traumatic optic neuropathy. JCI Insight 9:e172935

doi: 10.1172/jci.insight.172935
[119]

Schmitt K, Holsboer-Trachsler E, Eckert A. 2016. BDNF in sleep, insomnia, and sleep deprivation. Annals of Medicine 48:42−51

doi: 10.3109/07853890.2015.1131327
[120]

Chen Y, Mehta G, Vasiliou V. 2009. Antioxidant defenses in the ocular surface. The Ocular Surface 7:176−85

doi: 10.1016/S1542-0124(12)70185-4
[121]

Holekamp NM, Shui YB, Beebe DC. 2005. Vitrectomy surgery increases oxygen exposure to the lens: a possible mechanism for nuclear cataract formation. American Journal of Ophthalmology 139:302−10

doi: 10.1016/j.ajo.2004.09.046
[122]

Shui YB, Wang X, Hu JS, Wang SP, Garcia CM, et al. 2003. Vascular endothelial growth factor expression and signaling in the lens. Investigative Ophthalmology & Visual Science 44:3911−19

doi: 10.1167/iovs.02-1226
[123]

Palmquist BM, Philipson B, Barr PO. 1984. Nuclear cataract and myopia during hyperbaric oxygen therapy. British Journal of Ophthalmology 68:113−17

doi: 10.1136/bjo.68.2.113
[124]

Yu HS, Yee RW, Howes KA, Reiter RJ. 1990. Diurnal rhythms of immunoreactive melatonin in the aqueous humor and serum of male pigmented rabbits. Neuroscience Letters 116:309−14

doi: 10.1016/0304-3940(90)90092-N
[125]

Abe M, Itoh MT, Miyata M, Shimizu K, Sumi Y. 2000. Circadian rhythm of serotonin N-acetyltransferase activity in rat lens. Experimental Eye Research 70:805−8

doi: 10.1006/exer.2000.0845
[126]

Alvord VM, Kantra EJ, Pendergast JS. 2022. Estrogens and the circadian system. Seminars in Cell & Developmental Biology 126:56−65

doi: 10.1016/j.semcdb.2021.04.010
[127]

Celojevic D, Petersen A, Karlsson JO, Behndig A, Zetterberg M. 2011. Effects of 17β-estradiol on proliferation, cell viability and intracellular redox status in native human lens epithelial cells. Molecular Vision 17:1987−96

[128]

Nickla DL, Wildsoet C, Wallman J. 1998. Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes. Experimental Eye Research 66:163−81

doi: 10.1006/exer.1997.0420
[129]

Papastergiou GI, Schmid GF, Riva CE, Mendel MJ, Stone RA, et al. 1998. Ocular axial length and choroidal thickness in newly hatched chicks and one-year-old chickens fluctuate in a diurnal pattern that is influenced by visual experience and intraocular pressure changes. Experimental Eye Research 66:195−205

doi: 10.1006/exer.1997.0421
[130]

Li XQ, Larsen M, Munch IC. 2011. Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students. Investigative Ophthalmology & Visual Science 52:8438−41

doi: 10.1167/iovs.11-8108
[131]

Nickla DL, Wildsoet CF, Troilo D. 2002. Diurnal rhythms in intraocular pressure, axial length, and choroidal thickness in a primate model of eye growth, the common marmoset. Investigative Ophthalmology & Visual Science 43:2519−28

[132]

Altinel MG, Uslu H, Kanra AY, Dalkilic O. 2022. Effect of obstructive sleep apnoea syndrome and continuous positive airway pressure treatment on choroidal structure. Eye 36:1977−81

doi: 10.1038/s41433-021-01790-w
[133]

Shirzadi K, Torkashvand A. 2021. Association of choroidal thickness with sleep deprivation in night-shift healthcare workers. Annals of Military and Health Sciences Research 19:e113229

doi: 10.5812/amh.113229
[134]

Sahbaz C, Elbay A, Ozcelik M, Ozdemir H. 2020. Insomnia might influence the thickness of choroid, retinal nerve fiber and inner plexiform layer. Brain Sciences 10:178

doi: 10.3390/brainsci10030178
[135]

Waller EA, Bendel RE, Kaplan J. 2008. Sleep Disorders and the Eye. Mayo Clinic Proceedings 83:1251−61

doi: 10.4065/83.11.1251
[136]

McNab AA. 2005. The eye and sleep. Clinical & Experimental Ophthalmology 33:117−25

doi: 10.1111/j.1442-9071.2005.00969.x
[137]

Pizarro A, Hayer K, Lahens NF, Hogenesch JB. 2013. CircaDB: a database of mammalian circadian gene expression profiles. Nucleic Acids Research 41:D1009−D1013

doi: 10.1093/nar/gks1161
[138]

Mejri MA, Yousfi N, Hammouda O, Tayech A, Ben Rayana MC, et al. 2017. One night of partial sleep deprivation increased biomarkers of muscle and cardiac injuries during acute intermittent exercise. The Journal of Sports Medicine and Physical Fitness 57:643−51

doi: 10.23736/S0022-4707.16.06159-4
[139]

Nédélec M, Halson S, Abaidia AE, Ahmaidi S, Dupont G. 2015. Stress, sleep and recovery in elite soccer: a critical review of the literature. Sports Medicine 45:1387−400

doi: 10.1007/s40279-015-0358-z
[140]

Andrews JL, Zhang X, McCarthy JJ, McDearmon EL, Hornberger TA, et al. 2010. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proceedings of the National Academy of Sciences of the United States of Americ 107:19090−95

doi: 10.1073/pnas.1014523107
[141]

Chatterjee S, Yin H, Nam D, Li Y, Ma K. 2015. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion. Experimental Cell Research 331:200−10

doi: 10.1016/j.yexcr.2014.08.041
[142]

Biagetti B, Simó R. 2021. GH/IGF-1 abnormalities and muscle impairment: from basic research to clinical practice. International Journal of Molecular Sciences 22:415

doi: 10.3390/ijms22010415
[143]

Sassin JF, Parker DC, Mace JW, Gotlin RW, Johnson LC, et al. 1969. Human growth hormone release: relation to slow-wave sleep and sleep-walking cycles. Science 165:513−15

doi: 10.1126/science.165.3892.513
[144]

Chennaoui M, Arnal PJ, Drogou C, Sauvet F, Gomez-Merino D. 2016. Sleep extension increases IGF-I concentrations before and during sleep deprivation in healthy young men. Physiologie Appliquee, Nutrition et Metabolisme 41:963−70

doi: 10.1139/apnm-2016-0110
[145]

Carbone JW, McClung JP, Pasiakos SM. 2012. Skeletal muscle responses to negative energy balance: effects of dietary protein. Advances in Nutrition 3:119−26

doi: 10.3945/an.111.001792
[146]

DelMonte DW, Kim T. 2011. Anatomy and physiology of the cornea. Journal of Cataract & Refractive Surgery 37:588−98

doi: 10.1016/j.jcrs.2010.12.037
[147]

Vereertbrugghen A, Galletti JG. 2022. Corneal nerves and their role in dry eye pathophysiology. Experimental Eye Research 222:109191

doi: 10.1016/j.exer.2022.109191
[148]

Yamaguchi T. 2018. Inflammatory response in dry eye. Investigative Ophthalmology & Visual Science 59:Des192−Des199

doi: 10.1167/iovs.17-23651
[149]

Bain AR, Weil BR, Diehl KJ, Greiner JJ, Stauffer BL, et al. 2017. Insufficient sleep is associated with impaired nitric oxide-mediated endothelium-dependent vasodilation. Atherosclerosis 265:41−46

doi: 10.1016/j.atherosclerosis.2017.08.001
[150]

Besedovsky L, Lange T, Haack M. 2019. The sleep-immune crosstalk in health and disease. Physiological Reviews 99:1325−80

doi: 10.1152/physrev.00010.2018
[151]

Greenlund IM, Carter JR. 2022. Sympathetic neural responses to sleep disorders and insufficiencies. American Journal of Physiology Heart and Circulatory Physiolog 322:H337−H349

doi: 10.1152/ajpheart.00590.2021
[152]

Krause AJ, Simon EB, Mander BA, Greer SM, Saletin JM, et al. 2017. The sleep-deprived human brain. Nature Reviews Neuroscience 18:404−18

doi: 10.1038/nrn.2017.55
[153]

Pflugfelder SC, Stern ME. 2020. Biological functions of tear film. Experimental Eye Research 197:108115

doi: 10.1016/j.exer.2020.108115
[154]

Vu CHV, Kawashima M, Nakamura W, Nakamura TJ, Tsubota K. 2021. Circadian clock regulates tear secretion in the lacrimal gland. Experimental Eye Research 206:108524

doi: 10.1016/j.exer.2021.108524
[155]

Lee DS, Choi JB, Sohn DW. 2019. Impact of sleep deprivation on the hypothalamic-pituitary-gonadal axis and erectile tissue. The Journal of Sexual Medicine 16:5−16

doi: 10.1016/j.jsxm.2018.10.014
[156]

Paiva T, Gaspar T, Matos MG. 2015. Sleep deprivation in adolescents: correlations with health complaints and health-related quality of life. Sleep Medicine 16:521−27

doi: 10.1016/j.sleep.2014.10.010
[157]

Magno MS, Utheim TP, Snieder H, Hammond CJ, Vehof J. 2021. The relationship between dry eye and sleep quality. The Ocular Surface 20:13−19

doi: 10.1016/j.jtos.2020.12.009
[158]

Lee W, Lim SS, Won JU, Roh J, Lee JH, et al. 2015. The association between sleep duration and dry eye syndrome among Korean adults. Sleep Medicine 16:1327−31

doi: 10.1016/j.sleep.2015.06.021
[159]

Ayaki M, Kawashima M, Negishi K, Kishimoto T, Mimura M, et al. 2016. Sleep and mood disorders in dry eye disease and allied irritating ocular diseases. Scientific Reports 6:22480

doi: 10.1038/srep22480
[160]

Lee YB, Koh JW, Hyon JY, Wee WR, Kim JJ, et al. 2014. Sleep deprivation reduces tear secretion and impairs the tear film. Investigative Ophthalmology & Visual Science 55:3525−31

doi: 10.1167/iovs.14-13881
[161]

Schaumberg DA, Sullivan DA, Buring JE, Dana MR. 2003. Prevalence of dry eye syndrome among US women. American Journal of Ophthalmology 136:318−26

doi: 10.1016/S0002-9394(03)00218-6
[162]

Schirra F, Seitz B, Knop N, Knop E. 2009. Sexualhormone und trockenes Auge [Sex hormones and dry eye]. Ophthalmologe 106:988−94

doi: 10.1007/s00347-009-2005-2
[163]

Schirra F, Suzuki T, Dickinson DP, Townsend DJ, Gipson IK, et al. 2006. Identification of steroidogenic enzyme mRNAs in the human lacrimal gland, meibomian gland, cornea, and conjunctiva. Cornea 25:438−42

doi: 10.1097/01.ico.0000183664.80004.44
[164]

Sullivan DA, Wickham LA, Rocha EM, Krenzer KL, Sullivan BD, et al. 1999. Androgens and dry eye in Sjögren's syndrome. Annals of the New York Academy of Sciences 876:312−24

doi: 10.1111/j.1749-6632.1999.tb07656.x
[165]

Supalaset S, Tananuvat N, Pongsatha S, Chaidaroon W, Ausayakhun S. 2019. A randomized controlled double-masked study of transdermal androgen in dry eye patients associated with androgen deficiency. American Journal of Ophthalmology 197:136−44

doi: 10.1016/j.ajo.2018.09.021
[166]

Leproult R, Van Cauter E. 2011. Effect of 1 week of sleep restriction on testosterone levels in young healthy men. JAMA 305:2173−4

doi: 10.1001/jama.2011.710
[167]

Zou S, Liu J, Si H, Huang D, Qi D, et al. 2023. High-fat intake reshapes the circadian transcriptome profile and metabolism in murine meibomian glands. Frontiers in Nutrition 10:1146916

doi: 10.3389/fnut.2023.1146916
[168]

Zhu Y, Huang X, Lin L, Di M, Chen R, et al. 2022. Sleep quality is associated with severe meibomian gland disruption in dry eye. Frontiers in Medicine 9:812705

doi: 10.3389/fmed.2022.812705
[169]

Goto E, Endo K, Suzuki A, Fujikura Y, Matsumoto Y, Tsubota K. 2003. Tear evaporation dynamics in normal subjects and subjects with obstructive meibomian gland dysfunction. Investigative Ophthalmology & Visual Science 44:533−29

doi: 10.1167/iovs.02-0170
[170]

Sullivan DA, Sullivan BD, Evans JE, Schirra F, Yamagami H, et al. 2002. Androgen deficiency, meibomian gland dysfunction, and evaporative dry eye. Annals of the New York Academy of Sciences 966:211−22

doi: 10.1111/j.1749-6632.2002.tb04217.x
[171]

Hao L, Tian Q, Liu S, Xu Z, Yang L. 2023. Alterations of ocular surface parameters in patients with obstructive sleep apnea syndrome. Frontiers in Medicine 10:1220104

doi: 10.3389/fmed.2023.1220104
[172]

Kamoi M, Ogawa Y, Uchino M, Tatematsu Y, Mori T, et al. 2011. Donor–recipient gender difference affects severity of dry eye after hematopoietic stem cell transplantation. Eye 25:860−65

doi: 10.1038/eye.2011.73
[173]

Lin CW, Su YC, Liu JD, Su HC, Chiang TY, et al. 2024. Impact of obstructive sleep apnea and continuous positive airway pressure treatment on dry eye disease: a systematic review and meta-analysis. Nature and Science of Sleep 16:1921−35

doi: 10.2147/NSS.S495883
[174]

Qian X, Yin T, Li T, Kang C, Guo R, et al. 2012. High Levels of Inflammation and Insulin Resistance in Obstructive Sleep Apnea Patients with Hypertension. Inflammation 35:1507−11

doi: 10.1007/s10753-012-9464-3
[175]

Bhatt SP, Guleria R, Kabra SK. 2021. Metabolic alterations and systemic inflammation in overweight/obese children with obstructive sleep apnea. PLOS One 16:e0252353

doi: 10.1371/journal.pone.0252353
[176]

Muhafiz E, Ölçen M, Erten R, Bozkurt E. 2020. Evaluation of meibomian glands in obstructive sleep apnea-hypopnea syndrome. Cornea 39:685−90

doi: 10.1097/ICO.0000000000002252
[177]

Liu DT, Di Pascuale MA, Sawai J, Gao YY, Tseng SCG. 2005. Tear film dynamics in floppy eyelid syndrome. Invest Ophthalmol Vis Sci 46:1188−94

doi: 10.1167/iovs.04-0913
[178]

Matossian C, Song X, Chopra I, Sainski-Nguyen A, Ogundele A. 2020. The prevalence and incidence of dry eye disease among patients using continuous positive airway pressure or other nasal mask therapy devices to treat sleep apnea. Clinical Ophthalmology 14:3371−79

doi: 10.2147/OPTH.S274949
[179]

Hysi PG, Choquet H, Khawaja AP, Wojciechowski R, Tedja MS, et al. 2020. Meta-analysis of 542, 934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nature Geneticst 52:401−7

doi: 10.1038/s41588-020-0599-0
[180]

Liu XN, Naduvilath TJ, Wang J, Xiong S, He X, et al. 2020. Sleeping late is a risk factor for myopia development amongst school-aged children in China. Scientific Reports 10:17194

doi: 10.1038/s41598-020-74348-7
[181]

Xu X, Wang D, Xiao G, Yu K, Gong Y. 2017. Sleep less, myopia more. Theory and Clinical Practice in Pediatric 1(1):11−17

doi: 10.25082/tcpp.2017.01.004
[182]

Jee D, Morgan IG, Kim EC. 2016. Inverse relationship between sleep duration and myopia. Acta Ophthalmologica 94:e204−e210

doi: 10.1111/aos.12776
[183]

Ruzycki PA, Zhang X, Chen S. 2018. CRX directs photoreceptor differentiation by accelerating chromatin remodeling at specific target sites. Epigenetics Chromatin 11:42

doi: 10.1186/s13072-018-0212-2
[184]

Rath MF, Bailey MJ, Kim JS, Ho AK, Gaildrat P, et al. 2009. Developmental and diurnal dynamics of Pax4 expression in the mammalian pineal gland: nocturnal down-regulation is mediated by adrenergic-cyclic adenosine 3', 5'-monophosphate signaling. Endocrinology 150:803−11

doi: 10.1210/en.2008-0882
[185]

Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S, et al. 2003. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nature Neuroscience 6:1255−63

doi: 10.1038/nn1155
[186]

Stone RA, McGlinn AM, Chakraborty R, Lee DC, Yang V, et al. 2019. Altered ocular parameters from circadian clock gene disruptions. PLoS One 14:e0217111

doi: 10.1371/journal.pone.0217111
[187]

Chakraborty R, Pardue MT. 2015. Molecular and biochemical aspects of the retina on refraction. Progress in Molecular Biology and Translational Science 134:249−67

doi: 10.1016/bs.pmbts.2015.06.013
[188]

Ostrin LA. 2019. Ocular and systemic melatonin and the influence of light exposure. Clinical and Experimental Optometry 102:99−108

doi: 10.1111/cxo.12824
[189]

Chakraborty R, Micic G, Thorley L, Nissen TR, Lovato N, et al. 2021. Myopia, or near-sightedness, is associated with delayed melatonin circadian timing and lower melatonin output in young adult humans. Sleep 44:zsaa208

[190]

Tham YC, Li X, Wong TY, Quigley HA, Aung T, et al. 2014. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081−90

doi: 10.1016/j.ophtha.2014.05.013
[191]

Ciulla L, Moorthy M, Mathew S, Siesky B, Verticchio Vercellin AC, et al. 2020. Circadian rhythm and glaucoma: what do we know? Journal of Glaucoma 29:127−32

doi: 10.1097/IJG.0000000000001402
[192]

Qiu M, Ramulu PY, Boland MV. 2019. Association between sleep parameters and glaucoma in the United States population: national health and nutrition examination survey. Journal of Glaucoma 28:97−104

doi: 10.1097/IJG.0000000000001169
[193]

Lee JA, Han K, Min JA, Choi JA. 2016. Associations of sleep duration with open angle glaucoma in the Korea national health and nutrition examination survey. Medicine 95:e5704

doi: 10.1097/MD.0000000000005704
[194]

Gubin DG, Malishevskaya Т N, Astakhov YS, Astakhov SY, Cornelissen G, et al. 2019. Progressive retinal ganglion cell loss in primary open-angle glaucoma is associated with temperature circadian rhythm phase delay and compromised sleep. Chronobiology International 36:564−77

doi: 10.1080/07420528.2019.1566741
[195]

Quaranta L, Katsanos A, Russo A, Riva I. 2013. 24-hour intraocular pressure and ocular perfusion pressure in glaucoma. Survey of Ophthalmology 58:26−41

doi: 10.1016/j.survophthal.2012.05.003
[196]

Reiss GR, Lee DA, Topper JE, Brubaker RF. 1984. Aqueous humor flow during sleep. Investigative Ophthalmology & Visual Science 25:776−78

[197]

Alkozi HA, Navarro G, Franco R, Pintor J. 2020. Melatonin and the control of intraocular pressure. Progress in Retinal and Eye Research 75:100798

doi: 10.1016/j.preteyeres.2019.100798
[198]

Brubaker RF. 1991. Flow of aqueous humor in humans [The Friedenwald Lecture]. Investigative Ophthalmology & Visual Science 32:3145−66

[199]

Nouri-Mahdavi K, Hoffman D, Coleman AL, Liu G, Li G, et al. 2004. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology 111:1627−35

doi: 10.1016/j.ophtha.2004.02.017
[200]

Tan S, Yu M, Baig N, Chan PP, Tang FY, et al. 2015. Circadian intraocular pressure fluctuation and disease progression in primary angle closure glaucoma. Investigative Ophthalmology & Visual Science 56:4994−5005

doi: 10.1167/iovs.15-17245
[201]

Neroev V, Malishevskaya T, Weinert D, Astakhov S, Kolomeichuk S, et al. 2020. Disruption of 24-hour rhythm in intraocular pressure correlates with retinal ganglion cell loss in glaucoma. International Journal of Molecular Sciences 22:359

doi: 10.3390/ijms22010359
[202]

Porciatti V. 2015. Electrophysiological assessment of retinal ganglion cell function. Experimental Eye Research 141:164−70

doi: 10.1016/j.exer.2015.05.008
[203]

Choi J, Kim KH, Jeong J, Cho HS, Lee CH, et al. 2007. Circadian fluctuation of mean ocular perfusion pressure is a consistent risk factor for normal-tension glaucoma. Investigative Ophthalmology & Visual Science 48:104−11

doi: 10.1167/iovs.06-0615
[204]

Poh JH, Chee MWL. 2017. Degradation of neural representations in higher visual cortex by sleep deprivation. Scientific Reports 7:45532

doi: 10.1038/srep45532
[205]

van Leeuwen WMA, Lehto M, Karisola P, Lindholm H, Luukkonen R, et al. 2009. Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. PLoS One 4:e4589

doi: 10.1371/journal.pone.0004589
[206]

Zhang Y, Xie B, Chen X, Zhang J, Yuan S. 2021. A key role of gut microbiota-vagus nerve/spleen axis in sleep deprivation-mediated aggravation of systemic inflammation after LPS administration. Life Sciences 265:118736

doi: 10.1016/j.lfs.2020.118736
[207]

Miszczak J, Zuzewicz W. 1977. Variability of the averaged evoked potentials in healthy subjects after 24-hour sleep deprivation. Acta Physiologica Polonica 28:61−69

[208]

Pompeiano O, Pompeiano M, Corvaja N. 1995. Effects of sleep deprivation on the postnatal development of visual-deprived cells in the cat's lateral geniculate nucleus. Archives Italiennes de Biologie 134:121−40

[209]

Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, et al. 2001. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. The Journal of Neuroscience 21:6405−12

doi: 10.1523/JNEUROSCI.21-16-06405.2001
[210]

Moore RY. 1983. Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus. Federation Proceedings 42:2783−89

[211]

Abe M, Itoh MT, Miyata M, Ishikawa S, Sumi Y. 1999. Detection of melatonin, its precursors and related enzyme activities in rabbit lens. Experimental Eye Research 68:255−62

doi: 10.1006/exer.1998.0601
[212]

Żmijewski MA, Sweatman TW, Slominski AT. 2009. The melatonin-producing system is fully functional in retinal pigment epithelium (ARPE-19). Molecular and Cellular Endocrinology 307:211−6

doi: 10.1016/j.mce.2009.04.010
[213]

Osborne NN, Chidlow G. 1994. The presence of functional melatonin receptors in the iris-ciliary processes of the rabbit eye. Experimental Eye Research 59:3−9

doi: 10.1006/exer.1994.1076
[214]

Alkozi H, Sánchez-Naves J, de Lara MJP, Carracedo G, Fonseca B, et al. 2017. Elevated intraocular pressure increases melatonin levels in the aqueous humour. Acta Ophthalmologica 95:e185−e189

doi: 10.1111/aos.13253
[215]

Martínez-Águila A, Fonseca B, Bergua A, Pintor J. 2013. Melatonin analogue agomelatine reduces rabbit's intraocular pressure in normotensive and hypertensive conditions. European Journal of Pharmacology 701:213−17

doi: 10.1016/j.ejphar.2012.12.009
[216]

Pescosolido N, Gatto V, Stefanucci A, Rusciano D. 2015. Oral treatment with the melatonin agonist agomelatine lowers the intraocular pressure of glaucoma patients. Ophthalmic and Physiological Optics 35:201−5

doi: 10.1111/opo.12189
[217]

Wiechmann AF, Summers JA. 2008. Circadian rhythms in the eye: the physiological significance of melatonin receptors in ocular tissues. Progress in Retinal and Eye Research 27:137−60

doi: 10.1016/j.preteyeres.2007.10.001
[218]

Ismail SA, Mowafi HA. 2009. Melatonin provides anxiolysis, enhances analgesia, decreases intraocular pressure, and promotes better operating conditions during cataract surgery under topical anesthesia. Anesthesia and Analgesia 108:1146−51

doi: 10.1213/ane.0b013e3181907ebe
[219]

Alkozi HA, Pintor J. 2015. TRPV4 activation triggers the release of melatonin from human non-pigmented ciliary epithelial cells. Experimental Eye Research 136:34−7

doi: 10.1016/j.exer.2015.04.019
[220]

Huete-Toral F, Crooke A, Martínez-Águila A, Pintor J. 2015. Melatonin receptors trigger cAMP production and inhibit chloride movements in nonpigmented ciliary epithelial cells. The Journal of Pharmacology and Experimental Therapeutics 352:119−28

doi: 10.1124/jpet.114.218263
[221]

Greenfield DS, Liebmann JM, Ritch R. 1997. Brimonidine: a new alpha2-adrenoreceptor agonist for glaucoma treatment. Journal of Glaucoma 6:250−58

[222]

Hood S, Amir S. 2017. The aging clock: circadian rhythms and later life. The Journal of Clinical Investigation 127:437−46

doi: 10.1172/JCI90328
[223]

Holder GE. 2001. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Progress in Retinal and Eye Research 20:531−61

doi: 10.1016/S1350-9462(00)00030-6
[224]

Gubin D, Neroev V, Malishevskaya T, Cornelissen G, Astakhov SY, et al. 2021. Melatonin mitigates disrupted circadian rhythms, lowers intraocular pressure, and improves retinal ganglion cells function in glaucoma. Journal of Pineal Research 70:e12730

doi: 10.1111/jpi.12730
[225]

Belforte NA, Moreno MC, de Zavalía N, Sande PH, Chianelli MS, et al. 2010. Melatonin: a novel neuroprotectant for the treatment of glaucoma. Journal of Pineal Research 48:353−64

doi: 10.1111/j.1600-079X.2010.00762.x
[226]

Liang FQ, Green L, Wang C, Alssadi R, Godley BF. 2004. Melatonin protects human retinal pigment epithelial (RPE) cells against oxidative stress. Experimental Eye Research 78:1069−75

doi: 10.1016/j.exer.2004.02.003
[227]

Celebi S, Dilsiz N, YIlmaz T, Kkner AS. 2002. Effects of melatonin, vitamin E and octreotide on lipid peroxidation during ischemia- reperfusion in the guinea pig retina. European Journal of Ophthalmology 12:77−83

doi: 10.1177/112067210201200201
[228]

Del Valle Bessone C, Fajreldines HD, de Barboza GED, Tolosa de Talamoni NG, Allemandi DA, et al. 2019. Protective role of melatonin on retinal ganglionar cell: in vitro an in vivo evidences. Life Sciences 218:233−40

doi: 10.1016/j.lfs.2018.12.053
[229]

Fischer TW, Kleszczyński K, Hardkop LH, Kruse N, Zillikens D. 2013. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2'-deoxyguanosine) in ex vivo human skin. Journal of Pineal Research 54:303−12

doi: 10.1111/jpi.12018
[230]

Cheong AJY, Wang SKX, Woon CY, Yap KH, Ng KJY, et al. 2023. Obstructive sleep apnoea and glaucoma: a systematic review and meta-analysis. Eye 37:3065−83

doi: 10.1038/s41433-023-02471-6
[231]

Jelic S, Padeletti M, Kawut SM, Higgins C, Canfield SM, et al. 2008. Inflammation, oxidative stress, and repair capacity of the vascular endothelium in obstructive sleep apnea. Circulation 117:2270−78

doi: 10.1161/CIRCULATIONAHA.107.741512
[232]

Meier-Ewert HK, Ridker PM, Rifai N, Regan MM, Price NJ, et al. 2004. Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk. Journal of the American College of Cardiology 43:678−83

doi: 10.1016/j.jacc.2003.07.050
[233]

Phillips CL, Yang Q, Williams A, Roth M, Yee BJ, et al. 2007. The effect of short-term withdrawal from continuous positive airway pressure therapy on sympathetic activity and markers of vascular inflammation in subjects with obstructive sleep apnoea. Journal of Sleep Research 16:217−25

doi: 10.1111/j.1365-2869.2007.00589.x
[234]

Yokoe T, Minoguchi K, Matsuo H, Oda N, Minoguchi H, et al. 2003. Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 107:1129−34

doi: 10.1161/01.CIR.0000052627.99976.18
[235]

Phaniendra A, Jestadi DB, Periyasamy L. 2015. Free radicals: properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry 30:11−26

doi: 10.1007/s12291-014-0446-0
[236]

Gangwisch JE, Heymsfield SB, Boden-Albala B, Buijs RM, Kreier F, et al. 2006. Short sleep duration as a risk factor for hypertension: analyses of the first National Health and Nutrition Examination Survey. Hypertension 47:833−9

doi: 10.1161/01.HYP.0000217362.34748.e0
[237]

Klein BEK, Klein R, Lee KE, Knudtson MD, Tsai MY. 2006. Markers of inflammation, vascular endothelial dysfunction, and age-related cataract. American Journal of Ophthalmology 141:116−22

doi: 10.1016/j.ajo.2005.08.021
[238]

Selin JZ, Lindblad BE, Rautiainen S, Michaëlsson K, Morgenstern R, et al. 2014. Are increased levels of systemic oxidative stress and inflammation associated with age-related cataract? Antioxidants & Redox Signaling 21:700−4

doi: 10.1089/ars.2014.5853
[239]

Boey PY, Tay WT, Lamoureux E, Tai ES, Mitchell P, et al. 2010. C-reactive protein and age-related macular degeneration and cataract: the singapore malay eye study. Investigative Ophthalmology & Visual Science 51:1880−85

doi: 10.1167/iovs.09-4063
[240]

Franco R, Trivedi MS, Holger D, Bui AT, Craddock TJA, Tartar JL. 2017. Short-term sleep deprivation leads to decreased systemic redox metabolites and altered epigenetic status. PLOS One 12:e0181978

doi: 10.1371/journal.pone.0181978
[241]

Borges-Rodríguez Y, Morales-Cueto R, Rivillas-Acevedo L. 2023. Effect of the ultraviolet radiation on the lens. Current Protein & Peptide Science 24:215−28

doi: 10.2174/1389203724666230106161436
[242]

Reddy VN, Giblin FJ. 1984. Metabolism and function of glutathione in the lens. In Human Cataract Formation. Ciba Foundation Symposium 106, eds. Nugent J, Whelan J. London: Ciba Foundation. pp. 65−87. doi: 10.1002/9780470720875.ch5

[243]

Spector A, Ma W, Wang RR. 1998. The aqueous humor is capable of generating and degrading H2O2. Investigative Ophthalmology & Visual Science 39:1188−97

[244]

Truscott RJW. 2005. Age-related nuclear cataract-oxidation is the key. Experimental Eye Research 80:709−25

doi: 10.1016/j.exer.2004.12.007
[245]

Rouhiainen P, Rouhiainen H, Salonen JT. 1996. Association between low plasma vitamin E concentration and progression of early cortical lens opacities. American Journal of Epidemiology 144:496−500

doi: 10.1093/oxfordjournals.aje.a008956
[246]

Leske MC, Chylack LT Jr., Wu SY. 1991. The lens opacities case-control study. Risk factors for cataract. Archives of Ophthalmology 109:244−51

doi: 10.1001/archopht.1991.01080020090051
[247]

Simonelli F, Nesti A, Pensa M, Romano L, Savastano S, et al. 1989. Lipid peroxidation and human cataractogenesis in diabetes and severe myopia. Experimental Eye Research 49:181−87

doi: 10.1016/0014-4835(89)90088-2
[248]

Feng X, Xu K, Hao Y, Qi H. 2016. Impact of blue-light filtering intraocular lens implantation on the quality of sleep in patients after cataract surgery. Medicine 95:e5648

doi: 10.1097/MD.0000000000005648
[249]

Giménez M, Beersma D, Daan S, Van der Pol B, Kanis M, et al. 2016. Melatonin and sleep-wake rhythms before and after ocular lens replacement in elderly humans. Biology 5:12

doi: 10.3390/biology501001
[250]

Turner PL, Van Someren EJ, Mainster MA. 2010. The role of environmental light in sleep and health: effects of ocular aging and cataract surgery. Sleep Medicine Reviews 14(4):269−80

doi: 10.1016/j.smrv.2009.11.002
[251]

Klein BEK. 2007. Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol 14:179−83

doi: 10.1080/09286580701396720
[252]

Maniadakis N, Konstantakopoulou E. 2019. Cost effectiveness of treatments for diabetic retinopathy: a systematic literature review. Pharmacoeconomics 37:995−1010

doi: 10.1007/s40273-019-00800-w
[253]

Jee D, Keum N, Kang S, Arroyo JG. 2016. Sleep and diabetic retinopathy. Acta Ophthalmologica 95:41−47

doi: 10.1111/aos.13169
[254]

Abdelmaksoud AA, Salah NY, Ali ZM, Rashed HR, Abido AY. 2021. Disturbed sleep quality and architecture in adolescents with type 1 diabetes mellitus: relation to glycemic control, vascular complications and insulin sensitivity. Diabetes Research and Clinical Practice 174:108774

doi: 10.1016/j.diabres.2021.108774
[255]

Mersha GA, Alemu DS, Ferede MG, Tegegn MT, Tilahun MM, et al. 2023. Association of poor quality of sleep with vision-threatening diabetic retinopathy: a matched case–control study. Ophthalmology and Therapy 12:1141−53

doi: 10.1007/s40123-023-00663-7
[256]

Mason IC, Qian J, Adler GK, Scheer FAJL. 2020. Impact of circadian disruption on glucose metabolism: implications for type 2 diabetes. Diabetologia 63:462−72

doi: 10.1007/s00125-019-05059-6
[257]

Donga E, van Dijk M, van Dijk JG, Biermasz NR, Lammers GJ, et al. 2010. A single night of partial sleep deprivation induces insulin resistance in multiple metabolic pathways in healthy subjects. The Journal of Clinical Endocrinology & Metabolism 95:2963−68

doi: 10.1210/jc.2009-2430
[258]

Romeo G, Liu WH, Asnaghi V, Kern TS, Lorenzi M. 2002. Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes 51:2241−8

doi: 10.2337/diabetes.51.7.2241
[259]

Naruse K, Nakamura J, Hamada Y, Nakayama M, Chaya S, et al. 2000. Aldose reductase inhibition prevents glucose-induced apoptosis in cultured bovine retinal microvascular pericytes. Experimental Eye Research 71:309−15

doi: 10.1006/exer.2000.0882
[260]

Huang H, He J, Johnson D, Wei Y, Liu Y, et al. 2015. Deletion of placental growth factor prevents diabetic retinopathy and is associated with Akt activation and HIF1α-VEGF pathway inhibition. diabetes 2015;64: 200-212. Diabetes 64: 1067

[261]

Palochak CMA, Lee HE, Song J, Geng A, Linsenmeier RA, et al. 2019. Retinal blood velocity and flow in early diabetes and diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy. Journal of Clinical Medicine 8:1165

doi: 10.3390/jcm8081165
[262]

Kohner EM. 1997. Diabetic retinopathy and high blood pressure: defining the risk. American Journal of Hypertension 10:181s−183s

doi: 10.1016/s0895-7061(97)00150-7
[263]

Diabetes Control and Complications Trial Research Group. 1995. Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial. Ophthalmology 102:647−61

doi: 10.1016/s0161-6420(95)30973-6
[264]

Atrooz F, Salim S. 2020. Sleep deprivation, oxidative stress and inflammation. Advances in Protein Chemistry and Structural Biology 119:309−36

doi: 10.1016/bs.apcsb.2019.03.001
[265]

Yuuki T, Kanda T, Kimura Y, Kotajima N, Tamura J, et al. 2001. Inflammatory cytokines in vitreous fluid and serum of patients with diabetic vitreoretinopathy. Journal of Diabetes and Its Complications 15:257−59

doi: 10.1016/S1056-8727(01)00155-6
[266]

Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, et al. 2005. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54:1559−65

doi: 10.2337/diabetes.54.5.1559
[267]

Arif S, Moore F, Marks K, Bouckenooghe T, Dayan CM, et al. 2011. Peripheral and islet interleukin-17 pathway activation characterizes human autoimmune diabetes and promotes cytokine-mediated β-cell death. Diabetes 60:2112−19

doi: 10.2337/db10-1643
[268]

Cardona SM, Mendiola AS, Yang YC, Adkins SL, Torres V, et al. 2015. Disruption of fractalkine signaling leads to microglial activation and neuronal damage in the diabetic retina. ASN Neuro 7:1759091415608204

doi: 10.1177/1759091415608204
[269]

Vallejo S, Palacios E, Romacho T, Villalobos L, Peiró C, et al. 2014. The interleukin-1 receptor antagonist anakinra improves endothelial dysfunction in streptozotocin-induced diabetic rats. Cardiovascular Diabetology 13:158

doi: 10.1186/s12933-014-0158-z
[270]

Sasaki M, Ozawa Y, Kurihara T, Kubota S, Yuki K, et al. 2010. Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes. Diabetologia 53:971−9

doi: 10.1007/s00125-009-1655-6
[271]

Gangwisch JE. 2014. A review of evidence for the link between sleep duration and hypertension. American Journal of Hypertension 27:1235−42

doi: 10.1093/ajh/hpu071
[272]

Matthews DR, Stratton IM, Aldington SJ, Holman RR, Kohner EM, et al. 2004. Risks of progression of retinopathy and vision loss related to tight blood pressure control in type 2 diabetes mellitus: UKPDS 69. Archives of Ophthalmology 122:1631−40

doi: 10.1001/archopht.122.11.1631
[273]

Sada K, Yoshida Y, Shibuta K, Kimoto K, Miyamoto S, et al. 2023. Associations of diabetic retinopathy severity with high ambulatory blood pressure and suppressed serum renin levels. The Journal of Clinical Endocrinology and Metabolism 108:e1624−e1632

doi: 10.1210/clinem/dgad358
[274]

Tomić M, Ljubić S, Kaštelan S, Gverović Antunica A, Jazbec A, et al. 2013. Inflammation, haemostatic disturbance, and obesity: possible link to pathogenesis of diabetic retinopathy in type 2 diabetes. Mediators of Inflammation 2013:818671

doi: 10.1155/2013/818671
[275]

Ma W, Song J, Wang H, Shi F, Zhou N, et al. 2019. Chronic paradoxical sleep deprivation-induced depressionlike behavior, energy metabolism and microbial changes in rats. Life Sciences 225:88−97

doi: 10.1016/j.lfs.2019.04.006
[276]

Boland EM, Rao H, Dinges DF, Smith RV, Goel N, et al. 2017. Meta-analysis of the antidepressant effects of acute sleep deprivation. The Journal of Clinical Psychiatry 78:e1020−e1034

doi: 10.4088/JCP.16r11332
[277]

Liu Y, Chen J, Huang L, Yan S, Gao D, Yang F. 2022. Association between changes in the retina with major depressive disorder and sleep quality. Journal of Affective Disorders 311:548−53

doi: 10.1016/j.jad.2022.05.074
[278]

Sun XJ, Zhang GH, Guo CM, Zhou ZY, Niu YL, et al. 2022. Associations between psycho-behavioral risk factors and diabetic retinopathy: NHANES (2005–2018). Frontiers in Public Health 10:966714

doi: 10.3389/fpubh.2022.966714
[279]

Sieu N, Katon W, Lin EHB, Russo J, Ludman E, et al. 2011. Depression and incident diabetic retinopathy: a prospective cohort study. General Hospital Psychiatry 33:429−35

doi: 10.1016/j.genhosppsych.2011.05.021
[280]

Sumner RL, McMillan R, Spriggs MJ, Campbell D, Malpas G, et al. 2020. Ketamine enhances visual sensory evoked potential long-term potentiation in patients with major depressive disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 5:45−55

doi: 10.1016/j.bpsc.2019.07.002
[281]

Bubl E, Kern E, Ebert D, Riedel A, Tebartz van Elst L, et al. 2015. Retinal dysfunction of contrast processing in major depression also apparent in cortical activity. European Archives of Psychiatry and Clinical Neuroscience 265:343−50

doi: 10.1007/s00406-014-0573-x
[282]

Shiba T, Sato Y, Takahashi M. 2009. Relationship between diabetic retinopathy and sleep-disordered breathing. American Journal of Ophthalmology 147:1017−21

doi: 10.1016/j.ajo.2008.12.027
[283]

Altaf QA, Dodson P, Ali A, Raymond NT, Wharton H, et al. 2017. Obstructive sleep apnea and retinopathy in patients with type 2 diabetes. American Journal of Respiratory and Critical Care Medicine 196:892−900

doi: 10.1164/rccm.201701-0175OC
[284]

Simonson M, Li Y, Zhu B, McAnany JJ, Chirakalwasan N, et al. 2024. Multidimensional sleep health and diabetic retinopathy: Systematic review and meta-analysis. Sleep Medicine Reviews 74:101891

doi: 10.1016/j.smrv.2023.101891
[285]

Tejero-Garcés G, Ascaso FJ, Casas P, Adiego MI, Baptista P, et al. 2022. Assessment of the effectiveness of obstructive sleep apnea treatment using optical coherence tomography to evaluate retinal findings. Journal of Clinical Medicine 11:815

doi: 10.3390/jcm11030815
[286]

Lee KF, Chen YL, Yu CW, Chin KY, Wu CH. 2020. Gaze tracking and point estimation using low-cost head-mounted devices. Sensors 20:1917

doi: 10.3390/s20071917
[287]

Sempionatto JR, Lin M, Yin L, De la Paz E, Pei K, et al. 2021. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nature Biomedical Engineering 5:737−48

doi: 10.1038/s41551-021-00685-1
[288]

Gardner J, Swarbrick M, Kitzinger RH. 2023. Sleep is something, not nothing: an interprofessional approach to sleep assessment and treatment to support substance use recovery. Journal of Social Work Practice in the Addictions 23:39−51

doi: 10.1080/1533256X.2022.2159643