[1]

Lu C, Ji FD, Zhu FR. 2017. Mulberry cultivation varieties in China. Chongqing: Southwest Normal University 3−11 (in Chinese with English abstract)

[2]

Pan Y. 2000. Progress and prospect of germplasm resources and breeding of mulberry. Acta Sericologic Sinica 26:1−8 (in Chinese with English abstract)

doi: 10.3969/j.issn.0257-4799.2000.z1.001
[3]

Katsube T, Imawaka N, Kawano Y, Yamazaki Y, Shiwaku K, et al. 2006. Antioxidant flavonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activity. Food Chemistry 97:25−31

doi: 10.1016/j.foodchem.2005.03.019
[4]

Katsube T, Tsurunaga Y, Sugiyama M, Furuno T, Yamasaki Y. 2009. Effect of air-drying temperature on antioxidant capacity and stability of polyphenolic compounds in mulberry (Morus alba L.) leaves. Food Chemistry 113:964−69

doi: 10.1016/j.foodchem.2008.08.041
[5]

Harauma A, Murayama T, Ikeyama K, Sano H, Arai H, et al. 2007. Mulberry leaf powder prevents atherosclerosis in apolipoprotein E-deficient mice. Biochemical and Biophysical Research Communications 358:751−56

doi: 10.1016/j.bbrc.2007.04.170
[6]

Huang X, Liu Y, Li J, Xiong X, Chen Y, et al. 2013. The response of mulberry trees after seedling hardening to summer drought in the hydrofluctuation belt of the Three Gorges Reservoir area. Environmental Science and Pollution Research 20:7103−11

doi: 10.1007/s11356-012-1395-x
[7]

Sekhar KM, Reddy KS, Reddy AR. 2017. Amelioration of drought-induced negative responses by elevated CO2 in field grown short rotation coppice mulberry (Morus spp.), a potential bio-energy tree crop. Photosynthesis Research 132:151−64

doi: 10.1007/s11120-017-0351-5
[8]

Smith S, and Read D. 2008. Mycorrhizal Symbiosis. 3rd Edition. London: Academic Press. doi: 10.1016/B978-012370526-6.50020-9

[9]

Brundrett MC, Tedersoo L. 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist 220(4):1108−15

doi: 10.1111/nph.14976
[10]

Kim JC, Choi YH, Moon JY, Kim JU. 1984. Growth stimulation of mulberry trees in unsterilized soil under field conditions with VA mycorrhizal inoculation. Korean Journal of Sericultural Science 26(2):7−10

[11]

Muleta D, Assefa F, Nemomissa S, Granhall U. 2008. Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biology and fertility of soils 44:653−59

doi: 10.1007/s00374-007-0261-3
[12]

Liu CY, Hao Y, Wu XL, Dai FJ, Abd-Allah EF, et al. 2024. Arbuscular mycorrhizal fungi improve drought tolerance of tea plants via modulating root architecture and hormones. Plant Growth Regulation 102:13-22

doi: 10.1007/s10725-023-00972-8
[13]

Jiang Y, Wang W, Xie Q, Liu N, Liu L, et al. 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172−75

doi: 10.1126/science.aam9970
[14]

Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC. 2009. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters 12:452−61

doi: 10.1111/j.1461-0248.2009.01303.x
[15]

Gillespie AW, Farrell RE, Walley FL, Ross ARS, Leinweber P, et al. 2011. Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biology and Biochemistry 43:766−77

doi: 10.1016/j.soilbio.2010.12.010
[16]

Zhang C, Xiang X, Yang T, Liu X, Ma Y, et al. 2024. Nitrogen fertilization reduces plant diversity by changing the diversity and stability of arbuscular mycorrhizal fungal community in a temperate steppe. Science of the Total Environment 918:170775

doi: 10.1016/j.scitotenv.2024.170775
[17]

Kashyap S, Sharma S, Vasudevan P. 2004. Role of bioinoculants in development of salt-resistant saplings of Morus alba (var. sujanpuri) in vivo. Scientia Horticulturae 100(1−4):291−307

doi: 10.1016/j.scienta.2003.09.001
[18]

Beevi ND, Qadri SMH. 2010. Biological control of mulberry root rot disease (Fusarium spp.) with antagonistic microorganisms. Journal of Biopesticides 3(1):90−92

[19]

Chen K, Shi SM, Yang XH, Huang XZl. 2014. Contribution of arbuscular mycorrhizal inoculation to the growth and photosynthesis of mulberry in karst rocky desertification area. Applied Mechanics and Materials 488:769−73

doi: 10.4028/www.scientific.net/amm.488-489.769
[20]

Chakraborty B, Chanda A, Chakraborty S. 2015. Effect of bio-organic amendments on the infestation of major pests & foliar disease, leaf productivity in mulberry (Morus alba L.). American Journal of Experimental Agriculture 7(1):10−16

doi: 10.9734/AJEA/2015/15086
[21]

Wang KY, Jiang YY, Song WJ, Liu JY, Huang XZ, et al. 2017. Effects of interaction between AMF and Cd on mulberry growth and absorption and migration of inorganic elements. Mycosystema 36(7):996−1009

doi: 10.13346/j.mycosystema.170109
[22]

Baqual MF and Das PK. 2006. Influence of biofertilizers on macronutrient uptake by the mulberry plant and its impact on silkworm bioassay. Caspian Journal of Environmental Sciences 4:98−109

[23]

Kumaresan S, Elumalai S, Prabhakaran M. 2010. Effect of VAM fungi on growth and physiological parameters of mulberry (Morus alba L.) cultivars in South India. Biosciences Biotechnology Research Asia 7(2):793−806

[24]

Shi SM, Chen K, Gao Y, Liu B, Yang XH, et al. 2016. Arbuscular mycorrhizal fungus species dependency governs better plant physiological characteristics and leaf quality of mulberry (Morus alba L.) seedlings. Frontiers in Microbiology 7:1030

doi: 10.3389/fmicb.2016.01030
[25]

Williams A, Manoharan L, Rosenstock NP, Olsson PA, Hedlund K. 2017. Long‐term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange. New Phytologist 213(2):874−85

doi: 10.1111/nph.14196
[26]

Ji L, Yang X, Zhu C, Ma L, Chen Y, et al. 2022. Land-use changes alter the arbuscular mycorrhizal fungal community composition and assembly in the ancient tea forest reserve. Agriculture, Ecosystems & Environment 339:108142

doi: 10.1016/j.agee.2022.108142
[27]

Dal Ferro N, Stevenson B, Morari F, Müller K. 2023. Long-term tillage and irrigation effects on aggregation and soil organic carbon stabilization mechanisms. Geoderma 432:116398

doi: 10.1016/j.geoderma.2023.116398
[28]

Guzman A, Montes M, Hutchins L, DeLaCerda G, Yang P, et al. 2021. Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape. New Phytologist 231(1):447−59

doi: 10.1111/nph.17306
[29]

Huang Z, Zhao F, Wang M, Qi K, Wu J, et al. 2019. Soil chemical properties and geographical distance exerted effects on arbuscular mycorrhizal fungal community composition in pear orchards in Jiangsu Province, China. Applied Soil Ecology 142:18−24

doi: 10.1016/j.apsoil.2019.05.017
[30]

Liu Z, Fang J, He Y, Bending GD, Song B, et al. 2024. Distinct biogeographic patterns in Glomeromycotinian and Mucoromycotinian arbuscular mycorrhizal fungi across China: a meta-analysis. Science of The Total Environment 912:168907

doi: 10.1016/j.scitotenv.2023.168907
[31]

Garo G, Van Geel M, Eshetu F, Swennen R, Honnay O, et al. 2022. Arbuscular mycorrhizal fungi community composition, richness and diversity on enset (Ensete ventricosum (Welw) Cheesman) in Ethiopia is influenced by manure application intensity in low-input farming systems. Plant and Soil 478(1):409−25

doi: 10.1007/s11104-022-05462-w
[32]

Zhang R, Mu Y, Li X, Li S, Sang P, et al. 2020. Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates. Science of the Total Environment 740:139810

doi: 10.1016/j.scitotenv.2020.139810
[33]

Liu Y, Cui W, Li W, Xu S, Sun Y, et al. 2023. Effects of microplastics on cadmium accumulation by rice and arbuscular mycorrhizal fungal communities in cadmium-contaminated soil. Journal of Hazardous Materials 442:130102

doi: 10.1016/j.jhazmat.2022.130102
[34]

Lumini E, Vallino M, Alguacil MM, Romani M, Bianciotto V. 2011. Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities. Ecological Applications 21:1696−707

doi: 10.1890/10-1542.1
[35]

Luo X, Shi S, Liu Y, Yang H, Li N, et al. 2021. Arbuscular mycorrhizal fungal communities of topsoil and subsoil of an annual maize-wheat rotation after 15-years of differential mineral and organic fertilization. Agriculture, Ecosystems & Environment 315:107442

doi: 10.1016/j.agee.2021.107442
[36]

Lang M, Zhang C, Su W, Chen X, Zou C, et al. 2022. Long-term P fertilization significantly altered the diversity, composition and mycorrhizal traits of arbuscular mycorrhizal fungal communities in a wheat-maize rotation. Applied Soil Ecology 170:104261

doi: 10.1016/j.apsoil.2021.104261
[37]

Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, et a. 2005. Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytologist 165:273−83

doi: 10.1111/j.1469-8137.2004.01235.x
[38]

Corredor AH, Van Rees K, Vujanovic V. 2014. Host genotype and health status influence on the composition of the arbuscular mycorrhizal fungi in Salix bioenergy plantations. Forest Ecology and Management 314:112−19

doi: 10.1016/j.foreco.2013.12.002
[39]

Bainard LD, Bainard JD, HamelC, Hamel C, Gan Y. 2014. Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiology Ecology 88(2):333−44

doi: 10.1111/1574-6941.12300
[40]

Wang JP, Huang RZ, Zhao JM, Yuan JH, Huang GM, et al. 2023. Effects of cultivars and habitats on rhizospheric arbuscular mycorrhizal fungal communities associated with gannan navel oranges. Archives of Agronomy and Soil Science 69(14):3102−19

doi: 10.1080/03650340.2023.2205135
[41]

Xing D, Wang Z, Xiao J, Han S, Luo C, et al. 2018. The composition and diversity of arbuscular mycorrhizal fungi in karst soils and roots collected from mulberry of different ages. Ciencia Rural 48(10):e20180361

doi: 10.1590/0103-8478cr20180361
[42]

Yang JH, Wang CL, Dai HL. 2008. Soil agrochemical analysis and environmental monitoring techniques (in Chinese). Beijing: China University Press.

[43]

Guan SY, Zhang D, Zhang Z. 1986. Soil enzyme and its research methods (in Chinese). Beijing, China: Agricultural Press

[44]

Wright SF, Upadhyaya A. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 198(1):97−107

doi: 10.1023/A:1004347701584
[45]

Yang YN, Ba L, Bai XN, Zhang LC, Wang DL. 2010. An improved method to stain arbuscular mycorrhizal fungi in plant roots. Acta Ecologica Sinica 30(3):774−79

doi: 10.20103/j.stxb.2010.03.027
[46]

McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115(3):495−501

doi: 10.1111/j.1469-8137.1990.tb00476.x
[47]

Schwarzott D, Schüßler A. 2001. A simple and reliable method for SSU rRNA gene DNA extraction, amplification, and cloning from single AM fungal spores. Mycorrhiza 10(4):203−207

doi: 10.1007/PL00009996
[48]

Lee J, Lee S, Young JPW. 2008. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology 65(2):339−49

doi: 10.1111/j.1574-6941.2008.00531.x
[49]

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological) 57(1):289−300

doi: 10.1111/j.2517-6161.1995.tb02031.x
[50]

Öpik M, Vanatoa A, Vanatoa E, Moora M, Davion J, et al. 2010. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist 188:223−41

doi: 10.1111/j.1469-8137.2010.03334.x
[51]

Singh AK, Hamel C, DePauw RM, Knox RE. 2012. Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada. Canadian Journal of Microbiology 58:293−302

doi: 10.1139/w11-140
[52]

Martín-Robles N, Lehmann A, Seco E, Aroca R, Rillig MC, et al. 2017. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytologist 218:322−34

doi: 10.1111/nph.14962
[53]

Stefani F, Dupont S, Laterrière M, Knox R, Ruan Y, et a. 2020. Similar arbuscular mycorrhizal fungal communities in 31 durum wheat cultivars (Triticum turgidum L. var. durum) under field conditions in Eastern Canada. Frontiers in Plant Science 11:1206

doi: 10.3389/fpls.2020.01206
[54]

Johnson NC. 1993. Can fertilization of soil select less mutualistic mycorrhizae? Ecological Applications 3:749−57

doi: 10.2307/1942106
[55]

Xiao D, Tan Y, Liu X, Yang R, Zhang W, et al. 2019. Effects of different legume species and densities on arbuscular mycorrhizal fungal communities in a karst grassland ecosystem. Science of The Total Environment 678:551−58

doi: 10.1016/j.scitotenv.2019.04.293
[56]

Reyes-Jaramillo I, Chimal-Sánchez E, Salmerón-Castro JY, Vázquez-Pérez N, Varela-Fregoso L. 2019. The community of arbuscular mycorrhizal fungi (Glomeromycota) associated with mezcal agaves from Oaxaca and its relationship with some soil characteristics. Revista Mexicana de Biodiversidad 90(1):15

[57]

Xu T, Veresoglou SD, Chen Y, Rillig MC, Xiang D, et al. 2016. Plant community, geographic distance and abiotic factors play different roles in predicting AMF biogeography at the regional scale in northern China. Environmental microbiology 8(6):1048−57

doi: 10.1111/1758-2229.12485
[58]

Grünfeld L, Wulf M, Rillig MC, Manntschke A, Veresoglou SD. 2020. Neighbours of arbuscular-mycorrhiza associating trees are colonized more extensively by arbuscular mycorrhizal fungi than their conspecifics in ectomycorrhiza dominated stands. New Phytologist 227(1):10−13

doi: 10.1111/nph.16377
[59]

Gao C, Montoya L, Xu L, Madera M, Hollingsworth J, et al. 2019. Strong succession in arbuscular mycorrhizal fungal communities. The ISME Journal 13(1):214−26

doi: 10.1038/s41396-018-0264-0
[60]

Li L, Mccormack ML, Chen F, Wang H, Ma Z, et al. 2019. Different responses of absorptive roots and arbuscular mycorrhizal fungi to fertilization provide diverse nutrient acquisition strategies in Chinese fir. Forest Ecology and Management 433:64−72

doi: 10.1016/j.foreco.2018.10.055
[61]

Gehring CA, Connell JH. 2006. Arbuscular mycorrhizal fungi in the tree seedlings of two Australian rain forests: occurrence, colonization, and relationships with plant performance. Mycorrhiza 16:89−98

doi: 10.1007/s00572-005-0018-5
[62]

Shi SM, Chen K, Tu B, Yang XH, Huang XZ. 2013. Diversity of AMF in mulberry rhizosphere in a rock desertification area and vigorous mulberry seedling culture. Journal of Southwest University (Natrual Science Edition) 35(10):24−30 (in Chinese with English abstract)

doi: 10.13718/j.cnki.xdzk.2013.10.027
[63]

Zheng YR. 2021. Diversity of arbuscular mycorrhizal fungi (AMF) in mulberry rhizosphere and its effect on salt tolerance of hosts. Thesis (in Chinese with English abstract). Northwest Agriculture and Forestry University, China. pp. 8−10

[64]

Biermann B, Linderman RG. 1983. Use of vesicular‐arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytologist 95(1):97−105

doi: 10.1111/j.1469-8137.1983.tb03472.x
[65]

Daniell TJ, Husband R, Fitter AH, Young JPW. 2001. Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiology Ecology 36(2-3):203−9

doi: 10.1111/j.1574-6941.2001.tb00841.x
[66]

Torrecillas E, Alguacil MM, Roldán A. 2012. Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid mediterranean prairies. Applied & Environmental Microbiology 78(17):6180−86

[67]

Nadesan ST, Ray JG. 2024. Ecology of arbuscular mycorrhizal association in coconut (Cocos nucifera L.) palms: Analysis of factors influencing AMF in fields. Rhizosphere 32:100961

doi: 10.1016/j.rhisph.2024.100961
[68]

Singh AK, Rai A, Singh N. 2016. Effect of long-term land use systems on fractions of glomalin and soil organic carbon in the indo-Gangetic plain. Geoderma 277:41−50

doi: 10.1016/j.geoderma.2016.05.004
[69]

Luo X, He X, Luo X, Liu Y, Wang J, et al. 2019. Soil organic carbon shapes AMF communities in soils and roots of cynodon dactylon under anti-seasonal drying-wetting cycles. Diversity 11(10):197

doi: 10.3390/d11100197
[70]

González-López AM, Qui\-nones-Aguilar EE, Aburto-González CA, Alejo-Santiago G, Hernández-Cuevas LV, et al. 2024. Mycorrhizal fungi in Annona muricata L. rhizosphere in two agricultural production systems in Nayarit, Mexico. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 52(3):13850

doi: 10.15835/nbha52313850
[71]

Zhang Y, Li T, Wu H, Bei S, Zhang J, et al. 2019. Effect of different fertilization practices on soil microbial community in a wheat-maize rotation system. Sustainability 2019.11(15):4088

doi: 10.3390/su11154088
[72]

Song F, Pan Z, Bai F, An J, Liu J, et al. 2015. The scion/rrootstock genotypes and habitats affect arbuscular mycorrhizal fungal community in citrus. Frontiers in Microbiology 6:1372

doi: 10.3389/fmicb.2015.01372
[73]

Xiao D, Che R, Liu X, Tan Y, Yang R, et al. 2019. Arbuscular mycorrhizal fungi abundance was sensitive to nitrogen addition but diversity was sensitive to phosphorus addition in Karst ecosystems. Biology and Fertility of Soils 55(5):457−469

doi: 10.1007/s00374-019-01362-x
[74]

Zhang Z, Ge S, Fan LC, Guo S, Hu Q, et al. 2022. Diversity in rhizospheric microbial communities in tea varieties at different locations and tapping potential beneficial microorganisms. Frontiers in Microbiology 13:1027444

doi: 10.3389/fmicb.2022.1027444
[75]

Egerton-Warburton LM, Johnson NC, Allen EB. 2007. Mycorrhizal community dynamics following nitrogen fertilization: a cross‐site test in five grasslands. Ecological monographs 77(4):527−44

doi: 10.1890/06-1772.1
[76]

Zheng Y, Kim YC, Tian XF, Chen L, Yang W, et al. 2014. Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow. FEMS Microbiology Ecology 89:594−605

doi: 10.1111/1574-6941.12361
[77]

Zhang J, Wang F, Che R, Wang P, Liu H, et al. 2016. Precipitation shapes communities of arbuscular mycorrhizal fungi in Tibetan alpine steppe. Scientific Reports 22(6):23488

doi: 10.1038/srep23488
[78]

Kowalska I, Konieczny A, Gąstoł M, Sady W, Hanus-Fajerska E. 2015. Effect of mycorrhiza and phosphorus content in nutrient solution on the yield and nutritional status of tomato plants grown on rockwool or coconut coir. Agricultural and Food Science 24:39−51

doi: 10.23986/afsci.47204
[79]

Wang J, Wang GG, Zhang B, Yuan Z, Fu Z, et al. 2019. Arbuscular mycorrhizal fungi associated with tree species in a planted forest of Eastern China. Forests 10(5):424

doi: 10.3390/f10050424
[80]

del Mar Alguacil M, Lozano Z, Campoy MJ, Roldán A. 2010. Phosphorus fertilisation management modifies the biodiversity of AM fungi in a tropical savanna forage system. Soil Biology & Biochemistry 42(7):1114−22

doi: 10.1016/j.soilbio.2010.03.012
[81]

Xu S, Zhang J, Rong J, Ma L, Tian L, et al. 2017. Composition shifts of arbuscular mycorrhizal fungi between natural wetland and cultivated paddy field. Geomicrobiology Journal 34:834−39

doi: 10.1080/01490451.2017.1280861
[82]

Chen B, Ye Z, Tang X, Chai Z, Ma Y, et al. 2024. A comprehensive evaluation of the optimum amount of phosphate fertilizer for drip irrigation of cotton under mulch based on root morphology, physiology, and mycorrhizal symbiosis. Soil and Tillage Research 244:106276

doi: 10.1016/j.still.2024.106276
[83]

Rillig MC, Wright SF, Eviner VT. 2002. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant and soil 238:325−33

doi: 10.1023/A:1014483303813
[84]

Driver JD, Holben WE, Rillig MC. 2005. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 37(1):101−6

doi: 10.1016/j.soilbio.2004.06.011
[85]

Wu F, Dong M, Liu Y, Ma X, An L, et al. 2011. Effects of long-term fertilization on AM fungal community structure and Glomalin-related soil protein in the Loess Plateau of China. Plant and Soil 342:233−47

doi: 10.1007/s11104-010-0688-4
[86]

Govindu D, Duvva A, Shaikh AH, Podeti S. 2020. The impact of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution and their relationship with soil properties of agroforestry plants in coamine region of North Telangana. Indian Phytopathology 73:737−40

doi: 10.1007/s42360-020-00259-2
[87]

Cissé G, Essi M, Kedi B, Nicolas M, Staunton S. 2023. Accumulation and vertical distribution of glomalin-related soil protein in French temperate forest soils as a function of tree type, climate, and soil properties. Catena 220:106635

doi: 10.1016/j.catena.2022.106635
[88]

Mishra S, Mishra AK, Arya R, Mishra VC. 2024. Evaluating the influence of ecological diversity on glomalin production and its implications for multifunctionality in ecosystem services. Innovation Discovery 54(2):509−17

doi: 10.53964/id.2024020
[89]

Yang H, Wang G, Wang J, Xiao Q, Li Z, et al. 2024. No-tillage facilitates soil organic carbon sequestration by enhancing arbuscular mycorrhizal fungi-related soil proteins accumulation and aggregation. Catena 245:108323

doi: 10.1016/j.catena.2024.108323
[90]

Stürmer SL, Kemmelmeier K, Moreira BC, Kasuya MCM, Pereira GMD, et al. 2018. Arbuscular mycorrhizal fungi (Glomeromycota) communities in tropical savannas of Roraima, Brazil. Mycological progress 17:1149−59

doi: 10.1007/s11557-018-1430-5
[91]

Yang H, Yuan Y, Zhang Q, Tang J, Liu Y, et al. 2011. Changes in soil organic carbon, total nitrogen, and abundance of arbuscular mycorrhizal fungi along a large-scale aridity gradient. Catena 87:70−77

doi: 10.1016/j.catena.2011.05.009
[92]

Zhu X, Yang W, Song F, Li X. 2020. Diversity and composition of arbuscular mycorrhizal fungal communities in the cropland black soils of China. Global Ecology and Conservation 22:e00964

doi: 10.1016/j.gecco.2020.e00964