[1]

Basak SS, Adak A. 2024. Physicochemical methods for disinfection of contaminated surfaces–a way to control infectious diseases. Journal of Environmental Health Science and Engineering 22:53−64

doi: 10.1007/s40201-024-00893-2
[2]

Yahya MFZR, Alias Z, Karsani SA. 2018. Antibiofilm activity and mode of action of DMSO alone and its combination with afatinib against Gram-negative pathogens. Folia Microbiologica 63:23−30

doi: 10.1007/s12223-017-0532-9
[3]

Yaacob MF, Murata A, Nor NHM, Jesse FFA, Yahya MFZR. 2021. Biochemical composition, morphology and antimicrobial susceptibility pattern of Corynebacterium pseudotuberculosis biofilm. Journal of King Saud University-Science 33(1):101225

doi: 10.1016/j.jksus.2020.10.022
[4]

Sharma S, Jaiswal AK, Duffy B, Jaiswal S. 2023. Food contact surfaces: Challenges. legislation and solutions. Food Reviews International 39(2):1086−109

[5]

Zhao Y, Bhavya ML, Patange A, Sun DW, Tiwari BK. 2023. Plasma-activated liquids for mitigating biofilms on food and food contact surfaces. Comprehensive Reviews in Food Science and Food Safety 22(3):1654−85

doi: 10.1111/1541-4337.13126
[6]

Liu X, Yao H, Zhao X, Ge C. 2023. Biofilm formation and control of foodborne pathogenic bacteria. Molecules 28(6):2432

doi: 10.3390/molecules28062432
[7]

Shineh G, Mobaraki M, Perves Bappy MJ, Mills DK. 2023. Biofilm formation, and related impacts on healthcare, food processing and packaging, industrial manufacturing, marine industries, and sanitation–a review. Applied Microbiology 3(3):629−65

doi: 10.3390/applmicrobiol3030044
[8]

Fadiji T, Rashvand M, Daramola MO, Iwarere SA. 2023. A review on antimicrobial packaging for extending the shelf life of food. Processes 11(2):590

doi: 10.3390/pr11020590
[9]

Duda-Chodak A, Tarko T, Petka-Poniatowska K. 2023. Antimicrobial compounds in food packaging. International Journal of Molecular Sciences 24(3):2457

doi: 10.3390/ijms24032457
[10]

Liu R, Gao Z, Snell HA, Ma H. 2020. Food safety concerns and consumer preferences for food safety attributes: Evidence from China. Food Control 112:107157

doi: 10.1016/j.foodcont.2020.107157
[11]

Becerril R, Nerín C, Silva F. 2020. Encapsulation systems for antimicrobial food packaging components: an update. Molecules 25(5):1134

doi: 10.3390/molecules25051134
[12]

Chauhan AK, Kang SC. 2014. Thymol disrupts the membrane integrity of Salmonella ser. typhimurium in vitro and recovers infected macrophages from oxidative stress in an ex vivo model. Research in Microbiology 165(7):559−65

doi: 10.1016/j.resmic.2014.07.001
[13]

Wijesundara NM, Lee SF, Cheng Z, Davidson, R, Rupasinghe HPV. 2021. Carvacrol exhibits rapid bactericidal activity against Streptococcus pyogenes through cell membrane damage. Scientific Reports 11:1487

doi: 10.1038/s41598-020-79713-0
[14]

Luo K, Zhao P, He Y, Kang S, Shen C, et al. 2022. Antibacterial effect of oregano essential oil against Vibrio vulnificus and its mechanism. Foods 11(3):403

doi: 10.3390/foods11030403
[15]

Peyrot C, Wilkinson KJ, Desrosiers M, Sauvé S. 2014. Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environmental Toxicology and Chemistry 33(1):115−25

doi: 10.1002/etc.2398
[16]

Chandrasekaran M, Kim KD, Chun SC. 2020. Antibacterial activity of chitosan nanoparticles: A review. Processes 8(9):1173

doi: 10.3390/pr8091173
[17]

Yahya MFZR, Alias Z, Karsani SA. 2017. Subtractive protein profiling of Salmonella typhimurium biofilm treated with DMSO. The Protein Journal 36:286−98

doi: 10.1007/s10930-017-9719-9
[18]

Kamaruzzaman ANA, Mulok TETZ, Nor NHM, Yahya MFZR. 2022. FTIR spectral changes in Candida albicans biofilm following exposure to antifungals. Malaysian Applied Biology 51(4):57−66

doi: 10.55230/mabjournal.v51i4.11
[19]

Isa SFM, Hamid UMA, Yahya MFZR. 2022. Treatment with the combined antimicrobials triggers proteomic changes in P. aeruginosa-C. albicans polyspecies biofilms. ScienceAsia 48(2):215−22

doi: 10.2306/scienceasia1513-1874.2022.020
[20]

Johari NA, Aazmi MS, Yahya MFZR. 2023. FTIR spectroscopic study of inhibition of chloroxylenol-based disinfectant against Salmonella enterica serovar Thyphimurium biofilm. Malaysian Applied Biology 52(2):97−107

doi: 10.55230/mabjournal.v52i2.2614
[21]

Francolini I, Norris P, Piozzi A, Donelli G, Stoodley P. 2004. Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrobial Agents and Chemotherapy 48(11):4360−65

doi: 10.1128/AAC.48.11.4360-4365.2004
[22]

Johari NA, Amran SSD, Kamaruzzaman ANA, Man CAIC, Yahya MFZR. 2020. Anti-biofilm potential and mode of action of Malaysian plant species: A review. Science Letters 14:34−46

doi: 10.24191/sl.v14i2.9541
[23]

Che Man CAI, Wan Abdul Razak WR, Yahya MFZR. 2022. Antibacterial and antibiofilm activities of Swietenia macrophylla King ethanolic extract against foodborne pathogens. Malaysian Applied Biology 51(4):45−56

doi: 10.55230/mabjournal.v51i4.10
[24]

Vozza Berardo ME, Mendieta JR, Villamonte MD, Colman SL, Nercessian D. 2024. Antifungal and antibacterial activities of Cannabis sativa L. resins. Journal of Ethnopharmacology 318:116839

doi: 10.1016/j.jep.2023.116839
[25]

Ribeiro-Santos R, Andrade M, de Melo NR, Sanches-Silva A. 2017. Use of essential oils in active food packaging: Recent advances and future trends. Trends in Food Science and Technology 61:132−40

doi: 10.1016/j.jpgs.2016.11.021
[26]

Álvarez-Martínez FJ, Barrajón-Catalán E, Encinar JA, Rodríguez-Díaz JC, Micol V. 2020. Antimicrobial capacity of plant polyphenols against gram-positive bacteria: a comprehensive review. Current Medicinal Chemistry 27(15):2576−606

doi: 10.2174/0929867325666181008115650
[27]

Bae JY, Seo YH, Oh SW. 2022. Antibacterial activities of polyphenols against foodborne pathogens and their application as antibacterial agents. Food Science and Biotechnology 31(8):985−97

doi: 10.1007/s10068-022-01058-3
[28]

Jailani A, Ahmed B, Lee JH, Lee J. 2022. Inhibition of Agrobacterium tumefaciens growth and biofilm formation by tannic acid. Biomedicines 10(7):1619

doi: 10.3390/biomedicines10071619
[29]

Zhao Y, Qu Y, Tang J, Chen J, Liu J. 2021. Tea catechin inhibits biofilm formation of methicillin-resistant S. aureus. Journal of Food Quality 2021:8873091

doi: 10.1155/2021/8873091
[30]

Khanum F, Zahoor T, Khan MI, Asghar M, Sablani SS. 2020. Antioxidant, antibacterial and functional-food-packaging potential of leaf extract from Pakistani olive cultivars. Pakistan Journal of Agricultural Sciences 57(3):735−42

doi: 10.21162/PAKJAS/20.8313
[31]

Lei L, Jiang S, Yao Z. 2024. Antibacterial activities of Adina rubella extract enhanced by fermentation and its application in packaging films. Food Chemistry 460:140604

doi: 10.1016/j.foodchem.2024.140604
[32]

Dobrucka R, Dlugaszewska J, Pawlik M, Szymański M. 2025. Innovative active bio-based food packaging material with Cannabis sativa L. seeds extract as an agent to reduce food waste. Colloids and Surfaces B: Biointerfaces 245:114313

doi: 10.1016/j.colsurfb.2024.114313
[33]

Suganthi S, Vignesh S, Kalyana Sundar J, Raj V. 2020. Fabrication of PVA polymer films with improved antibacterial activity by fine-tuning via organic acids for food packaging applications. Applied Water Science 10:100

doi: 10.1007/s13201-020-1162-y
[34]

Peighambardoust SH, Karimi Davarani A, Fasihnia SH. 2024. Effect of active antimicrobial films on quality parameters and shelf-life of fresh yufka dough. Heliyon 10:e25972

doi: 10.1016/j.heliyon.2024.e25972
[35]

Zhang Y, Luo H, Li Y, Li Z, Wen Y, et al. 2024. Antimicrobial keratin-based sustainable food packaging films reinforced with citric acid-modified cellulose nanocrystals. Sustainable Materials and Technologies 42:e01133

doi: 10.1016/j.susmat.2024.e01133
[36]

Duan J, Park SI, Daeschel MA, Zhao Y. 2007. Antimicrobial chitosan-lysozyme (CL) films and coatings for enhancing microbial safety of mozzarella cheese. Journal of Food Science 72(9):M355−M362

doi: 10.1111/j.1750-3841.2007.00556.x
[37]

Zhang C, Chen H, Feng J, Wang T, Liang Y, et al. 2024. Protein-derived antibacterial antioxidant nanoenzyme for fruit preservation. Chemical Engineering Journal 489:151515

doi: 10.1016/j.cej.2024.151515
[38]

Zhong C, Bao SW, Shen KS, Shu M, Geng JT, et al. 2025. Characterization and coating application of composite gelatin packaging containing eucalyptus leaf essential oil liposome and phage endolysin for preservation of Pacific white shrimp (Penaeus vannamei). Food Control 169:111017

doi: 10.1016/j.foodcont.2024.111017
[39]

Contessa CR, da Rosa GS, Moraes CC. 2021. New active packaging based on biopolymeric mixture added with bacteriocin as active compound. International Journal of Molecular Sciences 22(19):10628

doi: 10.3390/ijms221910628
[40]

Yu W, Guo J, Liu Y, Xue X, Wang X, et al. 2023. Fabrication of novel electrospun zein/polyethylene oxide film incorporating nisin for antimicrobial packaging. LWT-Food Science and Technology 185:115176

doi: 10.1016/j.lwt.2023.115176
[41]

Zhang R, Wang B, Zhang F, Zheng K, Liu Y. 2024. Milk-derived antimicrobial peptides incorporated whey protein film as active coating to improve microbial stability of refrigerated soft cheese. International Journal of Food Microbiology 419:110751

doi: 10.1016/j.ijfoodmicro.2024.110751
[42]

Zhai X, Zhou S, Zhang R, Wang W, Hou H. 2022. Antimicrobial starch/poly (butylene adipate-co-terephthalate) nanocomposite films loaded with a combination of silver and zinc oxide nanoparticles for food packaging. International Journal of Biological Macromolecules 206:298−305

doi: 10.1016/j.ijbiomac.2022.02.158
[43]

Cheran E, Sharmila Rahale C, Divyabharathi P, Viswanathan C, Narayanan L. 2024. Corn cob nanocellulose packaging for increasing the shelf-life of food products. International Journal of Biological Macromolecules 268:131403

doi: 10.1016/j.ijbiomac.2024.131403
[44]

Luo J, Chen L, Zhang W, Yuan J, Tian H, et al. 2024. Brick-cement system inspired fabrication of Ti3C2 MXene nanosheet reinforced high-performance of chitosan/gelatin/PVA composite films. International Journal of Biological Macromolecules 283:137839

doi: 10.1016/j.ijbiomac.2024.137839
[45]

Marsh K, Bugusu B. 2007. Food packaging—roles. materials, and environmental issues. Journal of Food Science 72(3):R39−R55

doi: 10.1111/j.1750-3841.2007.00301.x
[46]

Jiang Y, Zhang Y, Deng Y. 2023. Latest advances in active materials for food packaging and their application. Foods 12(22):4055

doi: 10.3390/foods12224055
[47]

Makwana S, Choudhary R, Dogra N, Kohli P, Haddock J. 2014. Nanoencapsulation and immobilization of cinnamaldehyde for developing antimicrobial food packaging material. LWT-Food science and technology 57(2):470−76

doi: 10.1016/j.lwt.2014.01.043
[48]

Kao CY, Huang YC, Chiu SY, Kuo KL, Hwang PA. 2018. Bacteriostatic effect of a calcined waste clamshell-activated plastic film for food packaging. Materials 11(8):1370

doi: 10.3390/ma11081370
[49]

Rodríguez-Sánchez IJ, Fuenmayor CA, Clavijo-Grimaldo D, Zuluaga-Domínguez CM. 2021. Electrospinning of ultra-thin membranes with incorporation of antimicrobial agents for applications in active packaging: A review. International Journal of Polymeric Materials and Polymeric Biomaterials 70(15):1053−76

doi: 10.1080/00914037.2020.1785450
[50]

Deshmukh RK, Gaikwad KK. 2024. Natural antimicrobial and antioxidant compounds for active food packaging applications. Biomass Conversion and Biorefinery 14(4):4419−40

doi: 10.1007/s13399-022-02623-w
[51]

Limjaroen P, Ryser E, Lockhart H, Harte B. 2003. Development of a food packaging coating material with antimicrobial properties. Journal of Plastic Film and Sheeting 19(2):95−109

doi: 10.1177/8756087903039409
[52]

González-Henríquez CM, Sarabia-Vallejos MA, Rodriguez Hernandez J. 2019. Antimicrobial polymers for additive manufacturing. International journal of molecular sciences 20(5):1210

doi: 10.3390/ijms20051210
[53]

Rohani Shirvan A, Hemmatinejad N, Bahrami SH, Bashari A. 2022. A comparison between solvent casting and electrospinning methods for the fabrication of neem extract-containing buccal films. Journal of Industrial Textiles 51:311S−335S

doi: 10.1177/15280837211027785
[54]

Stoyanova N, Nachev N, Spasova M. 2023. Innovative bioactive nanofibrous materials combining medicinal and aromatic plant extracts and electrospinning method. Membranes 13(10):840

doi: 10.3390/membranes13100840
[55]

Abbadessa A, Dogaris I, Kishani Farahani S, Reid MS, Rautkoski H, et al. 2023. Layer-by-layer assembly of sustainable lignin-based coatings for food packaging applications. Progress in Organic Coatings 182:107676

doi: 10.1016/j.porgcoat.2023.107676
[56]

Radusin T, Torres-Giner S, Stupar A, Ristic I, Miletic A, et al. 2019. Preparation. characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packaging and Shelf Life 21:100357

doi: 10.1016/j.fpsl.2019.100357
[57]

Ordon M, Zdanowicz M, Nawrotek P, Stachurska X, Mizielińska M. 2021. Polyethylene films containing plant extracts in the polymer matrix as antibacterial and antiviral materials. International Journal of Molecular Sciences 22(24):13438

doi: 10.3390/ijms222413438
[58]

Motelica L, Ficai D, Ficai A, Oprea OC, Kaya DA, et al. 2020. Biodegradable antimicrobial food packaging: Trends and perspectives. Foods 9(10):1438

doi: 10.3390/foods9101438
[59]

Hernández-García E, Vargas M, González-Martínez C, Chiralt A. 2021. Biodegradable antimicrobial films for food packaging: Effect of antimicrobials on degradation. Foods 10(6):1256

doi: 10.3390/foods10061256
[60]

Sadadekar AS, Shruthy R, Preetha R, Kumar N, Pande KR, et al. 2023. Enhanced antimicrobial and antioxidant properties of nano chitosan and pectin based biodegradable active packaging films incorporated with fennel (Foeniculum vulgare) essential oil and potato (Solanum tuberosum) peel extracts. Journal of Food Science and Technology 60(3):938−46

doi: 10.1007/s13197-021-05333-9
[61]

Shah YA, Bhatia S, Al-Harrasi A, Tarahi M, Almasi H, et al. 2024. Insights into recent innovations in barrier resistance of edible films for food packaging applications. International Journal of Biological Macromolecules 271:132354

doi: 10.1016/j.ijbiomac.2024.132354
[62]

Yue S, Zhang T, Wang S, Han D, Huang S, et al. 2024. Recent progress of biodegradable polymer package materials: nanotechnology improving both oxygen and water vapor barrier performance. Nanomaterials 14(4):338

doi: 10.3390/nano14040338
[63]

Hou T, Ma S, Wang F, Wang L. 2023. A comprehensive review of intelligent controlled release antimicrobial packaging in food preservation. Food Science and Biotechnology 32(11):1459−78

doi: 10.1007/s10068-023-01344-8
[64]

Wang Y, Yuan C, Liu Y, Cui B. 2021. Fabrication of kappa–carrageenan hydrogels with cinnamon essential oil/hydroxypropyl–β–cyclodextrin composite: evaluation of physicochemical properties, release kinetics and antimicrobial activity. International Journal of Biological Macromolecules 170:593−601

doi: 10.1016/j.ijbiomac.2020.12.176
[65]

Min T, Zhou L, Sun X. 2022. Enzyme-responsive food packaging system based on pectin-coated poly (lactic acid) nanofiber films for controlled release of thymol. Food Research International 157:111256

doi: 10.1016/j.foodres.2022.111256
[66]

Song T, Qian S, Lan T, Wu Y, Liu J, et al. 2022. Recent advances in bio-based smart active packaging materials. Foods 11(15):2228

doi: 10.3390/foods11152228
[67]

Mendes de Souza P, Fernández A, López-Carballo G, Gavara R, Hernández-Muñoz P. 2010. Modified sodium caseinate films as releasing carriers of lysozyme. Food Hydrocoll 24:300−6

doi: 10.1016/j.foodhyd.2009.10.005
[68]

Wong LW, Hou CY, Hsieh CC, Chang CK, Wu YS, et al. 2020. Preparation of antimicrobial active packaging film by capacitively coupled plasma treatment. LWT 117:108612

doi: 10.1016/j.lwt.2019.108612
[69]

Sani MA, Azizi-Lalabadi M, Tavassoli M, Mohammadi K, McClements DJ. 2021. Recent advances in the development of smart and active biodegradable packaging materials. Nanomaterials 11(5):1331

doi: 10.3390/nano11051331
[70]

Ding L, Li X, Hu L, Zhang Y, Jiang Y, et al. 2020. A naked-eye detection polyvinyl alcohol/cellulose-based pH sensor for intelligent packaging. Carbohydrate Polymers 233:115859

doi: 10.1016/j.carbpol.2020.115859
[71]

Ezati P, Tajik H, Moradi M, Molaei R. 2019. Intelligent pH-sensitive indicator based on starch-cellulose and alizarin dye to track freshness of rainbow trout fillet. International Journal of Biological Macromolecules 132:157−65

doi: 10.1016/j.ijbiomac.2019.03.173
[72]

Ren Z, Li Y. 2022. A miniaturized electrochemical nitrate sensor and the design for its automatic operation based on distributed model. Mathematical Problems in Engineering 2022:6028110

[73]

Drago E, Campardelli R, Pettinato M, Perego P. 2020. Innovations in smart packaging concepts for food: an extensive review. Foods 9:1628

doi: 10.3390/foods9111628
[74]

Sung SY, Sin LT, Tee TT, Bee ST, Rahmat AR, et al. 2013. Antimicrobial agents for food packaging applications. Trends in Food Science & Technology 33(2):110−23

doi: 10.1016/j.jpgs.2013.08.001
[75]

Thapliyal D, Karale M, Diwan V, Kumra S, Arya RK, et al. 2024. Current status of sustainable food packaging regulations: global perspective. Sustainability 16(13):5554

doi: 10.3390/su16135554