[1]

Highwood EJ, Kinnersley RP. 2006. When smoke gets in our eyes: the multiple impacts of atmospheric black carbon on climate, air quality and health. Environment International 32:560−66

doi: 10.1016/j.envint.2005.12.003
[2]

Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, et al. 2013. Bounding the role of black carbon in the climate system: a scientific assessment. Journal of Geophysical Research: Atmospheres 118:5380−552

doi: 10.1002/jgrd.50171
[3]

Kennedy IM. 2007. The health effects of combustion-generated aerosols. Proceedings of the Combustion Institute 31:2757−70

doi: 10.1016/j.proci.2006.08.116
[4]

Janssen NAH, Hoek G, Simic-Lawson M, Fischer P, van Bree L, et al. 2011. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environmental Health Perspectives 119:1691−99

doi: 10.1289/ehp.1003369
[5]

Frenklach M, Wang H. 1991. Detailed modeling of soot particle nucleation and growth. Symposium (International) on Combustion 23:1559−66

doi: 10.1016/S0082-0784(06)80426-1
[6]

Parker DSN, Kaiser RI, Troy TP, Ahmed M. 2014. Hydrogen abstraction/acetylene addition revealed. Angewandte Chemie International Edition 53:7740−44

doi: 10.1002/anie.201404537
[7]

Mebel AM, Landera A, Kaiser RI. 2017. Formation mechanisms of naphthalene and indene: From the interstellar medium to combustion flames. The Journal of Physical Chemistry A 121:901−26

doi: 10.1021/acs.jpca.6b09735
[8]

Mebel AM, Georgievskii Y, Jasper AW, Klippenstein SJ. 2017. Temperature-and pressure-dependent rate coefficients for the HACA pathways from benzene to naphthalene. Proceedings of the Combustion Institute 36:919−26

doi: 10.1016/j.proci.2016.07.013
[9]

Frenklach M, Moriarty NW, Brown NJ. 1998. Hydrogen migration in polyaromatic growth. Symposium (International) on Combustion 27:1655−61

doi: 10.1016/S0082-0784(98)80004-0
[10]

Parker DSN, Zhang F, Kim YS, Kaiser RI, Landera A, et al. 2012. Low temperature formation of naphthalene and its role in the synthesis of PAHs (polycyclic aromatic hydrocarbons) in the interstellar medium. Proceedings of the National Academy of Sciences 109:53−58

doi: 10.1073/pnas.1113827108
[11]

Moriarty NW, Frenklach M. 2000. Ab initio study of naphthalene formation by addition of vinylacetylene to phenyl. Proceedings of the Combustion Institute 28:2563−68

doi: 10.1016/S0082-0784(00)80673-6
[12]

Zhao L, Kaiser RI, Xu B, Ablikim U, Ahmed M, et al. 2018. Low-temperature formation of polycyclic aromatic hydrocarbons in Titan's atmosphere. Nature Astronomy 2:973−79

doi: 10.1038/s41550-018-0585-y
[13]

Shukla B, Susa A, Miyoshi A, Koshi M. 2008. Role of phenyl radicals in the growth of polycyclic aromatic hydrocarbons. The Journal of Physical Chemistry A 112:2362−69

doi: 10.1021/jp7098398
[14]

Shukla B, Tsuchiya K, Koshi M. 2011. Novel products from C6H5 + C6H6/C6H5 reactions. The Journal of Physical Chemistry A 115:5284−93

doi: 10.1021/jp201817n
[15]

Shukla B, Koshi M. 2010. A highly efficient growth mechanism of polycyclic aromatic hydrocarbons. Physical Chemistry Chemical Physics 12:2427−37

doi: 10.1039/b919644g
[16]

Xiong S, Li J, Wang J, Li Z, Li X. 2012. Kinetic study of the formation of triphenylene from the condensation of C12H10 + C6H5. Computational Theoretical Chemistry Accounts 985:1−7

doi: 10.1016/j.comptc.2012.01.023
[17]

Johansson KO, Head-Gordon MP, Schrader PE, Wilson KR, Michelsen HA. 2018. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science 361:997−1000

doi: 10.1126/science.aat3417
[18]

Jin H, Xing L, Liu D, Hao J, Yang J, et al. 2021. First aromatic ring formation by the radical-chain reaction of vinylacetylene and propargyl. Combustion and Flame 225:524−34

doi: 10.1016/j.combustflame.2020.11.034
[19]

Shukla B, Susa A, Miyoshi A, Koshi M. 2007. In situ direct sampling mass spectrometric study on formation of polycyclic aromatic hydrocarbons in toluene pyrolysis. The Journal of Physical Chemistry A 111:8308−24

doi: 10.1021/jp071813d
[20]

Jin H, Frassoldati A, Wang Y, Zhang X, Zeng M, et al. 2015. Kinetic modeling study of benzene and PAH formation in laminar methane flames. Combustion and Flame 162:1692−711

doi: 10.1016/j.combustflame.2014.11.031
[21]

Parker DSN, Kaiser RI, Bandyopadhyay B, Kostko O, Troy TP, et al. 2015. Unexpected chemistry from the reaction of naphthyl and acetylene at combustion-like temperatures. Angewandte Chemie-International Edition 54:5421−24

doi: 10.1002/anie.201411987
[22]

Sun W, Hamadi A, Abid S, Chaumeix N, Comandini A. 2020. An experimental and kinetic modeling study of phenylacetylene decomposition and the reactions with acetylene/ethylene under shock tube pyrolysis conditions. Combustion and Flame 220:257−71

doi: 10.1016/j.combustflame.2020.06.044
[23]

Yang J, Zhao L, Yuan W, Qi F, Li Y. 2015. Experimental and kinetic modeling investigation on laminar premixed benzene flames with various equivalence ratios. Proceedings of the Combustion Institute 35:855−62

doi: 10.1016/j.proci.2014.05.085
[24]

Castaldi MJ, Marinov NM, Melius CF, Huang J, Senkan SM, et al. 1996. Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame. Symposium (International) on Combustion 26:693−702

doi: 10.1016/S0082-0784(96)80277-3
[25]

Jin H, Ye L, Yang J, Jiang Y, Zhao L, et al. 2021. Inception of carbonaceous nanostructures via hydrogen-abstraction phenylacetylene-addition mechanism. Journal of the American Chemical Society 143:20710−16

doi: 10.1021/jacs.1c08230
[26]

Jin H, Chen W, Ye L, Lou H, Xu Q, et al. 2022. Reaction kinetics of phenyl+ phenylacetylene at combustion-relevant intermediate temperatures. Combustion and Flame 243:112014

doi: 10.1016/j.combustflame.2022.112014
[27]

Bhardwaj U, Yadava RN. 2025. Naphthalene: risk assessment and environmental health hazard. In Hazardous Chemicals, eds. Chawla M, Jaspal Singh J, Kaushik RD. UK: Academic Press. pp. 157−75. doi: 10.1016/B978-0-323-95235-4.00018-9

[28]

Clark CR, Henderson TR, Royer RE, Brooks AL, McClellan RO, et al. 1982. Mutagenicity of diesel exhaust particle extracts: influence of fuel composition in two diesel engines. Fundamental and Applied Toxicology 2:38−43

doi: 10.1016/S0272-0590(82)80062-6
[29]

Kislov VV, Islamova NI, Kolker AM, Lin SH, Mebel AM. 2005. Hydrogen abstraction acetylene addition and Diels−Alder mechanisms of PAH formation: a detailed study using first principles calculations. Journal of Chemical Theory Computation 1:908−24

doi: 10.1021/ct0500491
[30]

Shiroudi A, Deleuze MS. 2014. Theoretical study of the oxidation mechanisms of naphthalene initiated by hydroxyl radicals: the H abstraction pathway. The Journal of Physical Chemistry A 118:3625−36

doi: 10.1021/jp500124m
[31]

Shiroudi A, Deleuze MS, Canneaux S. 2014. Theoretical study of the oxidation mechanisms of naphthalene initiated by hydroxyl radicals: the OH-addition pathway. The Journal of Physical Chemistry A 118:4593−610

doi: 10.1021/jp411327e
[32]

Violi A, Truong TN, Sarofim AF. 2004. Kinetics of hydrogen abstraction reactions from polycyclic aromatic hydrocarbons by H atoms. The Journal of Physical Chemistry A 108:4846−52

doi: 10.1021/jp026557d
[33]

Yang J, Smith MC, Prendergast MB, Chu TC, Green WH. 2021. C14H10 polycyclic aromatic hydrocarbon formation by acetylene addition to naphthalenyl radicals observed. Physical Chemistry Chemical Physics 23:14325−39

doi: 10.1039/D1CP01565F
[34]

Park J, Nguyen HMT, Xu ZF, Lin MC. 2009. Kinetic study of the 2-naphthyl (C10H7) radical reaction with C2H2. The Journal of Physical Chemistry A 113:12199−206

doi: 10.1021/jp905854c
[35]

Richter H, Mazyar OA, Sumathi R, Green WH, Howard JB, et al. 2001. Detailed kinetic study of the growth of small polycyclic aromatic hydrocarbons. 1. 1-naphthyl+ ethyne. The Journal of Physical Chemistry A 105:1561−73

doi: 10.1021/jp002428q
[36]

Lifshitz A, Tamburu C, Dubnikova F. 2008. Reactions of 1-naphthyl radicals with ethylene. Single pulse shock tube experiments, quantum chemical, transition state theory, and multiwell calculations. The Journal of Physical Chemistry A 112:925−33

doi: 10.1021/jp077289s
[37]

Qi F. 2013. Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry. Proceedings of the Combustion Institute 34:33−63

doi: 10.1016/j.proci.2012.09.002
[38]

Zhou Z, Du X, Yang J, Wang Y, Li C, et al. 2016. The vacuum ultraviolet beamline/endstations at NSRL dedicated to combustion research. Journal of Synchrotron Radiation 23:1035−45

doi: 10.1107/S1600577516005816
[39]

Zhao Y, Truhlar DG. 2008. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts 120:215−41

doi: 10.1007/s00214-007-0310-x
[40]

Grimme S, Antony J, Ehrlich S, Krieg H. 2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics 132:154104

doi: 10.1063/1.3382344
[41]

Alecu IM, Zheng J, Zhao Y, Truhlar DG. 2010. Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. Journal of Chemical and Theory Computation 6:2872−87

doi: 10.1021/ct100326h
[42]

Grimme S, Ehrlich S, Goerigk L. 2011. Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry 32:1456−65

doi: 10.1002/jcc.21759
[43]

Goerigk L, Grimme S. 2011. Efficient and Accurate Double-Hybrid-Meta-GGA Density functionals—evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. Journal of Chemical Theory and Computation 7:291−309

doi: 10.1021/ct100466k
[44]

Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, et al. 2016. Gaussian16, Revision C. 01, 2016. Gaussian Inc, Wallingford CT. https://gaussian.com/gaussian16

[45]

Georgievskii Y, Miller JA, Burke MP, Klippenstein SJ. 2013. Reformulation and solution of the master equation for multiple-well chemical reactions. The Journal of Physical Chemistry A 117:12146−54

doi: 10.1021/jp4060704
[46]

Georgievskii Y, Klippenstein S. 2016. MESS. 2016.3.23. Argonne National Laboratory, Argonne, Illinois, USA. https://tcg.cse.anl.gov/papr/codes/mess.html

[47]

Joback KG. 1984. A unified approach to physical property estimation using multivariate statistical techniques. Thesis. Massachusetts Institute of Technology, Cambridge, MA.

[48]

Hippler H, Troe J, Wendelken HJ. 1983. Collisional deactivation of vibrationally highly excited polyatomic molecules. II. Direct observations for excited toluene. The Journal of Chemical Physics 78:6709−17

doi: 10.1063/1.444670
[49]

Cavallotti C, Pelucchi M, Georgievskii Y, Klippenstein SJ. 2019. EStokTP: electronic structure to temperature- and pressure-dependent rate constants-a code for automatically predicting the thermal kinetics of reactions. Journal of Chemical Theory and Computation 15:1122−45

doi: 10.1021/acs.jctc.8b00701
[50]

Maffei LP, Pelucchi M, Büttgen RD, Heufer KA, Faravelli T, et al. 2023. Rate constants for H-atom abstraction reactions from mono-aromatic hydrocarbons by H, CH3, OH and 3O2: a systematic theoretical investigation. Combustion and Flame 257:112421

doi: 10.1016/j.combustflame.2022.112421
[51]

Eckart C. 1930. The penetration of a potential barrier by electrons. Physical Review 35:1303

doi: 10.1103/PhysRev.35.1303
[52]

Zhang T, Zhang L, Hong X, Zhang K, Qi F, et al. 2009. An experimental and theoretical study of toluene pyrolysis with tunable synchrotron VUV photoionization and molecular-beam mass spectrometry. Combustion and Flame 156:2071−83

doi: 10.1016/j.combustflame.2009.06.001
[53]

Cavallotti C, Polino D. 2013. On the kinetics of the C5H5 + C5H5 reaction. Proceedings of the Combustion Institute 34:557−64

doi: 10.1016/j.proci.2012.05.097