[1]

Sun C, Huang H, Xu C, Li X, Chen K. 2013. Biological activities of extracts from Chinese bayberry (Myrica rubra Sieb. et Zucc. ): a review. Plant Foods for Human Nutrition 68(2):97−106

doi: 10.1007/s11130-013-0349-x
[2]

Zhang S, Yu Z, Sun L, Ren H, Zheng X, et al. 2022. An overview of the nutritional value, health properties, and future challenges of Chinese bayberry. PeerJ 10:e13070

doi: 10.7717/peerj.13070
[3]

Zhang Q, Huang Z, Wang Y, Wang Y, Fu L, et al. 2021. Chinese bayberry (Myrica rubra) phenolics mitigated protein glycoxidation and formation of advanced glycation end-products: a mechanistic investigation. Food Chemistry 361:130102

doi: 10.1016/j.foodchem.2021.130102
[4]

Atkinson NJ, Urwin PE. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany 63(10):3523−43

doi: 10.1093/jxb/ers100
[5]

Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. 2014. Abiotic and biotic stress combinations. New Phytologist 203(1):32−43

doi: 10.1111/nph.12797
[6]

Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, et al. 2020. Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences 63(5):635−74

doi: 10.1007/s11427-020-1683-x
[7]

Verma V, Ravindran P, Kumar PP. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology 14:86

doi: 10.1186/s12870-016-0771-y
[8]

Lyzenga WJ, Liu Z, Olukayode T, Zhao Y, Kochian LV, et al. 2023. Getting to the roots of N, P, and K uptake. Journal of Experimental Botany 74(6):1784−805

doi: 10.1093/jxb/erad035
[9]

Therby-Vale R, Lacombe B, Rhee SY, Nussaume L, Rouached H. 2022. Mineral nutrient signaling controls photosynthesis: focus on iron deficiency-induced chlorosis. Trends in Plant Science 27(5):502−9

doi: 10.1016/j.tplants.2021.11.005
[10]

Debona D, Rodrigues FA, Datnoff LE. 2017. Silicon's role in abiotic and biotic plant stresses. Annual Review of Phytopathology 55:85−107

doi: 10.1146/annurev-phyto-080516-035312
[11]

Sun Y, Wang M, Mur LAJ, Shen Q, Guo S. 2020. Unravelling the roles of nitrogen nutrition in plant disease defences. International Journal of Molecular Sciences 21(2):572

doi: 10.3390/ijms21020572
[12]

Fernández-Escobar R. 2019. Olive nutritional status and tolerance to biotic and abiotic stresses. Frontiers in Plant Science 10:1151

doi: 10.3389/fpls.2019.01151
[13]

Tripathi R, Tewari R, Singh KP, Keswani C, Minkina T, et al. 2022. Plant mineral nutrition and disease resistance: a significant linkage for sustainable crop protection. Frontiers in Plant Science 13:883970

doi: 10.3389/fpls.2022.883970
[14]

Silber A, Goldberg T, Shapira O, Hochberg U. 2022. Nitrogen uptake and macronutrients distribution in mango (Mangifera indica L. cv. Keitt) trees. Plant Physiology and Biochemistry 181:23−32

doi: 10.1016/j.plaphy.2022.03.036
[15]

Mostofa MG, Rahman MM, Ghosh TK, Kabir AH, Abdelrahman M, et al. 2022. Potassium in plant physiological adaptation to abiotic stresses. Plant Physiology and Biochemistry 186:279−89

doi: 10.1016/j.plaphy.2022.07.011
[16]

Wang YI, Wu WH. 2010. Plant sensing and signaling in response to K+-deficiency. Molecular Plant 3(2):280−87

doi: 10.1093/mp/ssq006
[17]

Wang M, Zheng Q, Shen Q, Guo S. 2013. The critical role of potassium in plant stress response. International Journal of Molecular Sciences 14(4):7370−90

doi: 10.3390/ijms14047370
[18]

Aldon D, Mbengue M, Mazars C, Galaud JP. 2018. Calcium signalling in plant biotic interactions. International Journal of Molecular Sciences 19(3):665

doi: 10.3390/ijms19030665
[19]

Wang T, Chen X, Ju C, Wang C. 2023. Calcium signaling in plant mineral nutrition: from uptake to transport. Plant Communications 4(6):100678

doi: 10.1016/j.xplc.2023.100678
[20]

Jing J, Xu X, Fu W, Zhang H, Qu S, et al. 2023. Difference in calcium accumulation in the fruit of two apple varieties and its relationship with vascular bundle development in the pedicel. Plant Physiology and Biochemistry 201:107833

doi: 10.1016/j.plaphy.2023.107833
[21]

Madani B, Mirshekari A, Yahia E. 2016. Effect of calcium chloride treatments on calcium content, anthracnose severity and antioxidant activity in papaya fruit during ambient storage. Journal of the Science of Food and Agriculture 96(9):2963−68

doi: 10.1002/jsfa.7462
[22]

Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F. 2012. Function of nutrient: micronutrients. In Marschner's Mineral Nutrition of Higher Plants, 3rd edition, ed. Marschner P. Sydney: Academic Press. pp. 191–248. doi: 10.1016/B978-0-12-384905-2.00007-8

[23]

Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology 28:489−521

doi: 10.1146/annurev-cellbio-092910-154055
[24]

Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, et al. 2020. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology 62(1):25−54

doi: 10.1111/jipb.12899
[25]

Deng H, Ma L, Gong D, Xue S, Ackah S, et al. 2023. BTH-induced joint regulation of wound healing at the wounds of apple fruit by JA and its downstream transcription factors. Food Chemistry 410:135184

doi: 10.1016/j.foodchem.2022.135184
[26]

Luo D, Sun W, Cai J, Hu G, Zhang D, et al. 2023. SlBBX20 attenuates JA signalling and regulates resistance to Botrytis cinerea by inhibiting SlMED25 in tomato. Plant Biotechnology Journal 21(4):792−805

doi: 10.1111/pbi.13997
[27]

Rivas-San Vicente M, Plasencia J. 2011. Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany 62(10):3321−38

doi: 10.1093/jxb/err031
[28]

Wang J, Wu D, Wang Y, Xie D. 2019. Jasmonate action in plant defense against insects. Journal of Experimental Botany 70(13):3391−400

doi: 10.1093/jxb/erz174
[29]

Jiang B, Liu R, Fang X, Tong C, Chen H, et al. 2022. Effects of salicylic acid treatment on fruit quality and wax composition of blueberry (Vaccinium virgatum Ait). Food Chemistry 368:130757

doi: 10.1016/j.foodchem.2021.130757
[30]

Imadi SR, Kazi AG, Ahanger MA, Gucel S, Ahmad P. 2015. Plant transcriptomics and responses to environmental stress: an overview. Journal of Genetics 94(3):525−37

doi: 10.1007/s12041-015-0545-6
[31]

Yao L, Jiang Z, Wang Y, Hu Y, Hao G, et al. 2023. High air humidity dampens salicylic acid pathway and NPR1 function to promote plant disease. The EMBO Journal 42(21):e113499

doi: 10.15252/embj.2023113499
[32]

Spoel SH, Dong X. 2024. Salicylic acid in plant immunity and beyond. The Plant Cell 36(5):1451−64

doi: 10.1093/plcell/koad329
[33]

Mir-Marqués A, Domingo A, Cervera ML, de la Guardia M. 2015. Mineral profile of kaki fruits (Diospyros kaki L.). Food Chemistry 172:291−97

doi: 10.1016/j.foodchem.2014.09.076
[34]

Liu C, Li H, Ren A, Chen G, Ye W, et al. 2023. A comparison of the mineral element content of 70 different varieties of pear fruit (Pyrus ussuriensis) in China. Peer J 11:e15328

doi: 10.7717/peerj.15328
[35]

Yanu P, Jakmunee J. 2017. Down scaled Kjeldahl digestion and flow injection conductometric system for determination of protein content in some traditional northern Thai foods. Food Chemistry 230:572−77

doi: 10.1016/j.foodchem.2017.02.142
[36]

Wang Y, Afeworki Y, Geng S, Kanchupati P, Gu M, et al. 2020. Hydrotropism in the primary roots of maize. New Phytologist 226(6):1796−808

doi: 10.1111/nph.16472
[37]

Sun L, Zhang S, Yu Z, Zheng X, Liang S, et al. 2024. Transcription-associated metabolomic analysis reveals the mechanism of fruit ripening during the development of Chinese bayberry. International Journal of Molecular Sciences 25(16):8654

doi: 10.3390/ijms25168654
[38]

Zhang S, Yu Z, Sun L, Liang S, Xu F, et al. 2024. T2T reference genome assembly and genome-wide association study reveal the genetic basis of Chinese bayberry fruit quality. Horticulture Research 11(3):uhae033

doi: 10.1093/hr/uhae033
[39]

Schmidt SB, Jensen PE, Husted S. 2016. Manganese deficiency in plants: the impact on photosystem II. Trends in Plant Science 21(7):622−32

doi: 10.1016/j.tplants.2016.03.001
[40]

Lim-Hing S, Gandhi KJK, Villari C. 2024. The role of Manganese in tree defenses against pests and pathogens. Plant Physiology and Biochemistry 210:108641

doi: 10.1016/j.plaphy.2024.108641
[41]

Liu F, Cai S, Ma Z, Yue H, Xing L, et al. 2023. RVE2, a new regulatory factor in jasmonic acid pathway, orchestrates resistance to Verticillium wilt. Plant Biotechnology Journal 21(12):2507−24

doi: 10.1111/pbi.14149
[42]

Glauser G, Dubugnon L, Mousavi SAR, Rudaz S, Wolfender JL, et al. 2009. Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. Journal of Biological Chemistry 284(50):34506−13

doi: 10.1074/jbc.M109.061432
[43]

Kumar V, Chaudhary P, Prasad A, Dogra V, Kumar A. 2023. Jasmonic acid limits Rhizoctonia solani AG1-IA infection in rice by modulating reactive oxygen species homeostasis. Plant Physiology and Biochemistry 196:520−30

doi: 10.1016/j.plaphy.2023.02.009
[44]

Li Z, Wei Y, Cao Z, Jiang S, Chen Y, et al. 2021. The jasmonic acid signaling pathway is associated with terpinen-4-ol-induced disease resistance against Botrytis cinerea in strawberry fruit. Journal of Agricultural and Food Chemistry 69(36):10678−87

doi: 10.1021/acs.jafc.1c04608
[45]

Chai L, Li Y, Chen S, Perl A, Zhao F, et al. 2014. RNA sequencing reveals high resolution expression change of major plant hormone pathway genes after young seedless grape berries treated with gibberellin. Plant Science 229:215−24

doi: 10.1016/j.plantsci.2014.09.010
[46]

Saha B, Nayak J, Srivastava R, Samal S, Kumar D, et al. 2023. Unraveling the involvement of WRKY TFs in regulating plant disease defense signaling. Planta 259(1):7

doi: 10.1007/s00425-023-04269-y
[47]

Sukaoun K, Tsuchiya T, Uchiyama H. 2024. Pathogen challenge in Arabidopsis cotyledons induces enhanced disease resistance at newly formed rosette leaves via sustained upregulation of WRKY70. Genes to Cells 12:1236−50

doi: 10.1111/gtc.13179
[48]

Wang W, Bai XD, Chen K, Gu CR, Yu QB, et al. 2022. Role of PsnWRKY70 in regulatory network response to infection with Alternaria alternata (Fr.) keissl in Populus. International Journal of Molecular Sciences 23(14):7537

doi: 10.3390/ijms23147537
[49]

Zhao H, Jiang J, Li K, Liu G. 2017. Populus simonii × Populus nigra WRKY70 is involved in salt stress and leaf blight disease responses. Tree Physiology 37(6):827−44

doi: 10.1093/treephys/tpx020
[50]

Wang X, Qiao Q, Zhao K, Zhai W, Zhang F, et al. 2024. PbWRKY18 promotes resistance against black spot disease by activation of the chalcone synthase gene PbCHS3 in pear. Plant Science 341:112015

doi: 10.1016/j.plantsci.2024.112015
[51]

Liu Z, Shi L, Weng Y, Zou H, Li X, et al. 2019. ChiIV3 acts as a novel target of WRKY40 to mediate pepper immunity against Ralstonia solanacearum infection. Molecular Plant-Microbe Interactions 32(9):1121−33

doi: 10.1094/MPMI-11-18-0313-R
[52]

Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, et al. 2002. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. The Plant Cell 14(4):817−31

doi: 10.1105/tpc.000794
[53]

Niderman T, Genetet I, Bruyere T, Gees R, Stintzi A, et al. 1995. Pathogenesis-related PR-1 proteins are antifungal (isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against phytophthora infestans). Plant Physiology 108:17−27

doi: 10.1104/pp.108.1.17