[1]

Pu L, Yu H, Dai M, He Y, Sun R, et al. 2022. Research progress and application of high-pressure hydrogen and liquid hydrogen in storage and transportation. Chinese Science Bulletin 67(19):2172−91

doi: 10.1360/TB-2022-0063
[2]

Ye J, Shi S, Yu T, Liu C, Li J, et al. 2023. Emissions of formaldehyde and nitrogen dioxide from liquefied petroleum gas combustion. Process Safety and Environmental Protection 177:1225−33

doi: 10.1016/j.psep.2023.07.093
[3]

Lautkaski R. 2009. Evaluation of BLEVE risks of tank wagons carrying flammable liquids. Journal of Loss Prevention in the Process Industries 22(1):117−23

doi: 10.1016/j.jlp.2008.07.005
[4]

Birk AM, Davison C, Cunningham M. 2007. Blast overpressures from medium scale BLEVE tests. Journal of Loss Prevention in the Process Industries 20(3):194−206

doi: 10.1016/j.jlp.2007.03.001
[5]

Birk AM, Heymes F, Aprin L, Slangen P, Lauret P. 2016. Near field blast effects from BLEVE. Chemical Engineering Transactions 48:283−88

doi: 10.3303/CET1648048
[6]

Birk AM. 2017. Shock waves and condensation clouds from industrial BLEVEs and VCEs. Process Safety and Environmental Protection 110:15−20

doi: 10.1016/j.psep.2017.06.017
[7]

Birk AM, Eyssette R, Heymes F. 2019. Early moments of BLEVE: From vessel opening to liquid flashing release. Process Safety and Environmental Protection 132:35−46

doi: 10.1016/j.psep.2019.09.028
[8]

Birk AM, Eyssette R, Heymes F. 2020. Analysis of BLEVE overpressure using spherical shock theory. Process Safety and Environmental Protection 134:108−20

doi: 10.1016/j.psep.2019.11.023
[9]

Eyssette R, Heymes F, Birk AM. 2021. Ground loading from BLEVE through small scale experiments: Experiments and results. Process Safety and Environmental Protection 148:1098−109

doi: 10.1016/j.psep.2021.02.031
[10]

Shang Q, Wang S, Pan X, Shi S, Ma Y, et al. 2021. Two-phase expanding mechanism and pressure response characteristic of boiling liquid expanding vapor explosion under rapid depressurization. Process Safety and Environmental Protection 148:959−67

doi: 10.1016/j.psep.2021.02.023
[11]

Tian Z, Shang Q, Pan X, Zhang R, Hua M, et al. 2022. Experimental study on explosive boiling mechanism of superheated liquid containing ethanol impurities under rapid depressurization. Process Safety and Environmental Protection 168:443−53

doi: 10.1016/j.psep.2022.09.073
[12]

Chen SN. 2012. Influences of obstacles installed in the container on the superheated liquid boiling. Advanced Materials Research 429:62−66

doi: 10.4028/www.scientific.net/AMR.429.62
[13]

Buivid MG, Sussman MV. 1978. Superheated liquids containing suspended particles. Nature 275:203−5

[14]

Duan Z, Ren T, Ding G. 2019. Suppression effects of micro-fin surface on the explosive boiling of liquefied gas under rapid depressurization. Journal of Hazardous Materials 365:375−85

doi: 10.1016/j.jhazmat.2018.11.025
[15]

Shebeko YN, Shevchuck AP, Smolin IM. 1996. BLEVE prevention using vent devices. Journal of Hazardous Materials 50(2-3):227−38

doi: 10.1016/0304-3894(96)01777-3
[16]

Shirvill LC. 2004. Efficacy of water spray protection against propane and butane jet fires impinging on LPG storage tanks. Journal of Loss Prevention in the Process Industries 17(2):111−18

doi: 10.1016/j.jlp.2003.10.004
[17]

Nutter DW, O'Neal DL. 1999. Modeling the transient outlet pressure and mass flow during flashing of HCFC-22 in a small nonadiabatic vessel. Mathematical and Computer Modelling 29(8):105−16

doi: 10.1016/S0895-7177(99)00074-6
[18]

Wei L, Wang S, Liu K, Pan X, Jiang J. 2024. Buffer effects of confined space on the boiling explosion under rapid depressurization. International Journal of Thermal Sciences 195:108678

doi: 10.1016/j.ijthermalsci.2023.108678
[19]

Chen SN, Sun JH, Chu GQ. 2007. Small scale experiments on boiling liquid expanding vapor explosions: Vessel over-pressure. Journal of Loss Prevention in the Process Industries 20(1):45−51

doi: 10.1016/j.jlp.2006.09.002
[20]

Ren J, Zhao B, Wang C, Bi M. 2020. Experimental study on the characteristics of the strong boiling induced by pressure relief at the top of vertical vessels. Journal of Loss Prevention in the Process Industries 67:104181

doi: 10.1016/j.jlp.2020.104181
[21]

Shi J, Ren J, Liu P, Bi M. 2013. Experimental research on the effects of fluid and heater on thermal stratification of liquefied gas. Experimental Thermal and Fluid Science 50:29−36

doi: 10.1016/j.expthermflusci.2013.04.021
[22]

Zhang Q, Bi Q, Wu J, Liang J, Wang W. 2013. Experimental investigation on the rapid evaporation of high-pressure R113 liquid due to sudden depressurization. International Journal of Heat and Mass Transfer 61:646−53

doi: 10.1016/j.ijheatmasstransfer.2013.02.024
[23]

Liu K. 2022. Explosion boiling and two-phase flow evolution of overheating liquid leakage in confined space. Thesis (in Chinese). Nanjing Tech University, Nanjing

[24]

Hemmatian B, Planas E, Casal J. 2015. Fire as a primary event of accident domino sequences: The case of BLEVE. Reliability Engineering & System Safety 139:141−48

doi: 10.1016/j.ress.2015.03.021
[25]

Shang Q, Tian Z, Wang S, Hua M, Pan X, et al. 2022. Experimental research on the two-phase explosive boiling mechanism of superheated liquid under different leakage conditions. Applied Thermal Engineering 216:119080

doi: 10.1016/j.applthermaleng.2022.119080
[26]

Wei L. 2024. Study on the effect of release rate on release and boiling of superheated liqu. Thesis (in Chinese). Nanjing Tech University, Nanjing

[27]

Pan X, Zhang R, He L, Hua M, Shang Q, et al. 2024. Experimental study on boiling mechanism of superheated liquid containing ethanol impurity under different leakage conditions. Applied Thermal Engineering 248:123107

doi: 10.1016/j.applthermaleng.2024.123107