[1]

FAO. 2024. The state of world fisheries and aquaculture 2024: Blue Transformation in action. Rome: FAO. doi: 10.4060/cd0683en

[2]

Oficialdegui FJ, Sánchez MI, Clavero M. 2020. One century away from home: how the red swamp crayfish took over the world. Reviews in Fish Biology and Fisheries 30:121−35

doi: 10.1007/s11160-020-09594-z
[3]

Wang Q, Lin Y, Zhang H, Fan W, Li S, et al. 2024. Positive impacts of dietary prebiotic inulin on growth performance, antioxidant capacity, immunity, and intestinal microbiota of red swamp crayfish (Procambarus clarkii). Aquaculture International 32:775−94

doi: 10.1007/s10499-023-01188-3
[4]

Singha KP, Sahu NP, Sardar P, Shamna N, Kumar V. 2024. A strategic roadmap for carbohydrate utilization in crustaceans feed. Reviews in Aquaculture 16:674−705

doi: 10.1111/raq.12861
[5]

Zhou CP, Ge XP, Liu B, Xie J, Miao LH. 2013. Effect of high dietary carbohydrate on the growth performance and physiological responses of juvenile Wuchang bream, Megalobrama amblycephala. Asian-Australasian Journal of Animal Sciences 26:1598−608

doi: 10.5713/ajas.2012.12659
[6]

Encarnação P. 2016. Functional feed additives in aquaculture feeds. In Aquafeed Formulation, ed. Nates SF. US: Academic Press. pp. 217−37. doi: 10.1016/B978-0-12-800873-7.00005-1

[7]

Kussmann M, Abe Cunha DH, Berciano S. 2023. Bioactive compounds for human and planetary health. Frontiers in Nutrition 10:1193848

doi: 10.3389/fnut.2023.1193848
[8]

Tian J, Gao WH, Wen H. 2018. Research advances: intestinal health and feed additives in aquatic animals. Chinese Journal of Animal Nutrition 30:7−13 (in Chinese)

doi: 10.3969/j.issn.1006-267x.2018.01.002
[9]

Doan HV, Hoseinifar SH, Jaturasitha S, Dawood MAO, Harikrishnan R. 2020. The effects of berberine powder supplementation on growth performance, skin mucus immune response, serum immunity, and disease resistance of Nile tilapia (Oreochromis niloticus) fingerlings. Aquaculture 520:734927

doi: 10.1016/j.aquaculture.2020.734927
[10]

Wang L, Sun Y, Xu B, Sagada G, Chen K, et al. 2020. Effects of berberine supplementation in high starch diet on growth performance, antioxidative status, immune parameters and ammonia stress response of fingerling black sea bream (Acanthopagrus schlegelii). Aquaculture 527:735473

doi: 10.1016/j.aquaculture.2020.735473
[11]

Pan H, Li Z, Xie J, Liu D, Wang H, et al. 2019. Berberine influences blood glucose via modulating the gut microbiome in grass carp. Frontiers in Microbiology 10:1066

doi: 10.3389/fmicb.2019.01066
[12]

Xu WN, Chen DH, Chen QQ, Liu WB. 2017. Growth performance, innate immune responses and disease resistance of fingerling blunt snout bream, Megalobrama amblycephala adapted to different berberine-dietary feeding modes. Fish & Shellfish Immunology 68:458−65

doi: 10.1016/j.fsi.2017.07.051
[13]

Gao C, Wang L, Wang H, Wang L, Wang CY, et al. 2025. Prefeeding of berberine alleviates waterborne copper-induced hepatic oxidative stress, lipid deposition, and intestinal microbiota dysbiosis in yellow catfish (Pelteobagrus fulvidraco). Aquaculture 594:741443

doi: 10.1016/j.aquaculture.2024.741443
[14]

Liu H, Wei M, Tan B, Dong X, Xie S. 2024. The supplementation of berberine in high-carbohydrate diets improves glucose metabolism of tilapia (Oreochromis niloticus) via transcriptome, bile acid synthesis gene expression and intestinal flora. Animals 14:1239

doi: 10.3390/ani14081239
[15]

Lu KL, Zhang DD, Wang LN, Xu WN, Liu WB. 2016. Molecular characterization of carnitine palmitoyltransferase IA in Megalobrama amblycephala and effects on its expression of feeding status and dietary lipid and berberine. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 191:20−25

doi: 10.1016/j.cbpb.2015.08.010
[16]

Tian J, Xiao W, Zhang J, Xu L, Li M, et al. 2024. Dietary phosphatidylcholine requirements of red swamp crayfish (Procambarus clarkii). Aquaculture International 32:6115−32

doi: 10.1007/s10499-024-01458-8
[17]

Association of Official Analytical Chemists (AOAC). 1997. Official Methods of Analysis of AOAC International. Gaithersburg (Maryland): AOAC International. www.aoac.org/official-methods-of-analysis

[18]

Roehrig KL, Allred JB. 1974. Direct enzymatic procedure for the determination of liver glycogen. Analytical Biochemistry 58:414−21

doi: 10.1016/0003-2697(74)90210-3
[19]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[20]

Jiang H, Qian Z, Lu W, Ding H, Yu H, et al. 2015. Identification and characterization of reference genes for normalizing expression data from red swamp crawfish Procambarus clarkii. International Journal of Molecular Sciences 16:21591−605

doi: 10.3390/ijms160921591
[21]

Kari ZA, Téllez-Isaías G, Khoo MI, Wee W, Kabir MA, et al. 2024. Resveratrol impacts on aquatic animals: a review. Fish Physiology and Biochemistry 50:307−18

doi: 10.1007/s10695-024-01319-4
[22]

Sampath WWHA, Rathnayake RMDS, Yang M, Zhang W, Mai K. 2020. Roles of dietary taurine in fish nutrition. Marine Life Science & Technology 2:360−75

doi: 10.1007/s42995-020-00051-1
[23]

Huang CC, Sun J, Ji H, Kaneko G, Xie XD, et al. 2020. Systemic effect of dietary lipid levels and α-lipoic acid supplementation on nutritional metabolism in zebrafish (Danio rerio): focusing on the transcriptional level. Fish Physiology and Biochemistry 46:1631−44

doi: 10.1007/s10695-020-00795-8
[24]

Askari VR, Khosravi K, Baradaran Rahimi V, Garzoli S. 2024. A mechanistic review on how berberine use combats diabetes and related complications: molecular, cellular, and metabolic effects. Pharmaceuticals 17:7

doi: 10.3390/pharmaceutics17010007
[25]

Utami AR, Maksum IP, Deawati Y. 2023. Berberine and its study as an antidiabetic compound. Biology 12:973

doi: 10.3390/biology12070973
[26]

He C, Jia X, Zhang L, Gao F, Jiang W, et al. 2021. Dietary berberine can ameliorate glucose metabolism disorder of Megalobrama amblycephala exposed to a high-carbohydrate diet. Fish Physiology and Biochemistry 47:499−513

doi: 10.1007/s10695-021-00927-8
[27]

Kamalam BS, Medale F, Panserat S. 2017. Utilisation of dietary carbohydrates in farmed fishes: new insights on influencing factors, biological limitations and future strategies. Aquaculture 467:3−27

doi: 10.1016/j.aquaculture.2016.02.007
[28]

Hemre GI, Mommsen TP, Krogdahl Å. 2002. Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquaculture Nutrition 8:175−94

doi: 10.1046/j.1365-2095.2002.00200.x
[29]

Schirf VR, Turner P, Selby L, Hannapel C, Cruz PDL, et al. 1987. Nutritional-status and energy-metabolism of crayfish (Procambarus-Clarkii, Girard) muscle and hepatopancreas. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 88:383−86

doi: 10.1016/0300-9629(87)90050-8
[30]

Shi HJ, Xu C, Liu MY, Wang BK, Liu WB, et al. 2018. Resveratrol improves the energy sensing and glycolipid metabolism of blunt snout bream Megalobrama amblycephala fed high-carbohydrate diets by activating the AMPK-SIRT1-PGC-1α network. Frontiers in Physiology 9:1258

doi: 10.3389/fphys.2018.01258
[31]

Ren G, Guo JH, Qian YZ, Kong WJ, Jiang JD. 2020. Berberine improves glucose and lipid metabolism in HepG2 cells through AMPKα1 activation. Frontiers in Pharmacology 11:647

doi: 10.3389/fphar.2020.00647
[32]

Rong Q, Han B, Li Y, Yin H, Li J, et al. 2021. Berberine reduces lipid accumulation by promoting fatty acid oxidation in renal tubular epithelial cells of the diabetic kidney. Frontiers in Pharmacology 12:729384

doi: 10.3389/fphar.2021.729384
[33]

He L, Zhou X, Huang N, Li H, Tian J, et al. 2017. AMPK regulation of glucose, lipid and protein metabolism: mechanisms and nutritional significance. Current Protein & Peptide Science 18:562−70

doi: 10.2174/1389203717666160627071125
[34]

Ming JH, Wang T, Wang TH, Ye JY, Zhang YX, et al. 2023. Effects of dietary berberine on growth performance, lipid metabolism, antioxidant capacity and lipometabolism-related genes expression of AMPK signaling pathway in juvenile black carp (Mylopharyngodon piceus) fed high-fat diets. Fish Physiology and Biochemistry 49:769−86

doi: 10.1007/s10695-022-01143-8
[35]

Lin SM, Shi CM, Mu MM, Chen YJ, Luo L. 2018. Effect of high dietary starch levels on growth, hepatic glucose metabolism, oxidative status and immune response of juvenile largemouth bass, Micropterus salmoides. Fish & Shellfish Immunology 78:121−26

doi: 10.1016/j.fsi.2018.04.046
[36]

Wu C, Ye J, Gao JE, Chen L, Lu Z. 2016. The effects of dietary carbohydrate on the growth, antioxidant capacities, innate immune responses and pathogen resistance of juvenile Black carp Mylopharyngodon piceus. Fish & Shellfish Immunology 49:132−42

doi: 10.1016/j.fsi.2015.12.030
[37]

Zhang BY, Cai GH, Yang HL, Nie QJ, Liu ZY, et al. 2024. New insights on intestinal microorganisms and carbohydrate metabolism in fish. Aquaculture International 32:2151−70

doi: 10.1007/s10499-023-01262-w
[38]

Bai N, Zhang W, Mai K, Wang X, Xu W, et al. 2010. Effects of discontinuous administration of β-glucan and glycyrrhizin on the growth and immunity of white shrimp Litopenaeus vannamei. Aquaculture 306:218−24

doi: 10.1016/j.aquaculture.2010.06.017
[39]

Yoshida T, Kruger R, Inglis V. 1995. Augmentation of non-specific protection in African catfish, Clarias gariepinus (Burchell), by the long-term oral-administration of immunostimulants. Journal of Fish Diseases 18:195−98

doi: 10.1111/j.1365-2761.1995.tb00278.x
[40]

Yang N, Sun RB, Chen XL, Zhen L, Ge C, et al. 2017. In vitro assessment of the glucose-lowering effects of berberrubine-9-O-β-D-glucuronide, an active metabolite of berberrubine. Acta Pharmacologica Sinica 38:351−61

doi: 10.1038/aps.2016.120