[1]

Salmerón-Manzano E, Garrido-Cardenas JA, Manzano-Agugliaro F. 2020. Worldwide research trends on medicinal plants. International Journal of Environmental Research and Public Health 17(10):3376

doi: 10.3390/ijerph17103376
[2]

Perera WPRT, Liyanage JA, Dissanayake KGC, Gunathilaka H, Weerakoon WMTDN, et al. 2021. Antiviral potential of selected medicinal herbs and their isolated natural products. BioMed Research International 2021:7872406

doi: 10.1155/2021/7872406
[3]

Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. 2021. Towards advances in medicinal plant antimicrobial activity: a review study on challenges and future perspectives. Microorganisms 9(10):2041

doi: 10.3390/microorganisms9102041
[4]

Zhou P, Dang J, Shi Z, Shao Y, Sang M, et al. 2022. Identification and characterization of a novel gene involved in glandular trichome development in Nepeta tenuifolia. Frontiers in Plant Science 13:936244

doi: 10.3389/fpls.2022.936244
[5]

Yin T, Wu H, Zhang S, Liu J, Lu H, et al. 2008. Two negative Cis-regulatory regions involved in fruit-specific promoter activity from watermelon (Citrullus vulgaris S. ). Journal of Experimental Botany 60:169−85

doi: 10.1093/jxb/ern273
[6]

Mao Y, Botella JR, Liu Y, Zhu JK. 2019. Gene editing in plants: Progress and challenges. National Science Review 6:421−37

doi: 10.1093/nsr/nwz005
[7]

Jian B, Hou W, Wu C, Liu B, Liu W, et al. 2009. Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics. BMC Plant Biology 9:78

doi: 10.1186/1471-2229-9-78
[8]

Chattopadhyay T, Roy S, Mitra A, Maiti MK. 2011. Development of a transgenic hairy root system in jute (Corchorus capsularis L. ) with gusA reporter gene through Agrobacterium rhizogenes mediated co-transformation. Plant Cell Reports 30:485−93

doi: 10.1007/s00299-010-0957-y
[9]

Ishida JK, Yoshida S, Ito M, Namba S, Shirasu K. 2011. Agrobacterium rhizogenes-mediated transformation of the parasitic plant Phtheirospermum japonicum. PLoS One 6:e25802

doi: 10.1371/journal.pone.0025802
[10]

Rogowska A, Pączkowski C, Szakiel A. 2023. Modifications in steroid and triterpenoid metabolism in Calendula officinalis plants and hairy root culture in response to chitosan treatment. BMC Plant Biology 23:263

doi: 10.1186/s12870-023-04261-4
[11]

Baek S, Ho TT, Lee H, Jung G, Kim YE, et al. 2020. Enhanced biosynthesis of triterpenoids in Centella asiatica hairy root culture by precursor feeding and elicitation. Plant Biotechnology Reports 14:45−53

doi: 10.1007/s11816-019-00573-w
[12]

Cao X, Xie H, Song M, Lu J, Ma P, et al. 2022. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. Innovation 4:100345

doi: 10.1016/j.xinn.2022.100345
[13]

Cao X, Xie H, Song M, Zhao L, Liu H, et al. 2024. Simple method for transformation and gene editing in medicinal plants. Journal of Integrative Plant Biology 66:17−19

doi: 10.1111/jipb.13593
[14]

Chen CLJ, Chen H, Cai H, Zhang J, et al. 2024. Comprehensive review of botanical characteristics, artificial cultivation methods, quality evaluation, genome research, and potential applications of Artemisia argyi Lévl. et Van. Medicinal Plant Biology 3:e002

doi: 10.48130/mpb-0024-0002
[15]

Zhang J, Mao X, Huang B, Lei M, Miao Y, et al. 2025. Establishment of high-efficiency hairy root and genetic transformation system in Cynanchum stauntonii. Journal of Biotechnology 402:21−29

doi: 10.1016/j.jbiotec.2025.02.006
[16]

Li Y, Peng S, Zhang J, Xiao C, Zhao R, et al. 2025. Establishment of cell suspension culture and genetic transformation systems for production of bioactive metabolites of medicinal plant Artemisia argyi Lévl. et Vant. Plant Cell, Tissue and Organ Culture (PCTOC) 161:15

doi: 10.1007/s11240-025-03032-3
[17]

Li X, Bu F, Zhang M, Li Z, Zhang Y, et al. 2025. Enhancing nature's palette through the epigenetic breeding of flower color in Chrysanthemum. New Phytologist 245:2117−32

doi: 10.1111/nph.20347
[18]

He Y, Zhang T, Sun H, Zhan H, Zhao Y. 2020. A reporter for noninvasively monitoring gene expression and plant transformation. Horticulture Research 7:152

doi: 10.1038/s41438-020-00390-1
[19]

Wang D, Couderc F, Tian CF, Gu W, Liu LX, et al. 2018. Conserved composition of nod factors and exopolysaccharides produced by different phylogenetic lineage Sinorhizobium strains nodulating soybean. Frontiers in Microbiology 9(9):2852

doi: 10.3389/fmicb.2018.02852
[20]

Qin T, Wang S, Yi X, Ying J, Dong J, et al. 2024. Development of a fast and efficient root transgenic system for exploring the function of RsMYB90 involved in the anthocyanin biosynthesis of radish. Scientia Horticulturae 323:112490

doi: 10.1016/j.scienta.2023.112490
[21]

Chen C, Miao Y, Luo D, Li J, Wang Z, et al. 2022. Sequence characteristics and phylogenetic analysis of the Artemisia argyi chloroplast genome. Frontiers in Plant Science 13:906725

doi: 10.3389/fpls.2022.906725
[22]

Meng F, Tang Q, Chu T, Li X, Lin Y, et al. 2022. TCMPG: an integrative database for traditional Chinese medicine plant genomes. Horticulture Research 9:uhac060

doi: 10.1093/hr/uhac060
[23]

Hua X, Song W, Wang K, Yin X, Hao C, et al. 2022. Effective prediction of biosynthetic pathway genes involved in bioactive polyphyllins in Paris polyphylla. Communications Biology 5:50

doi: 10.1038/s42003-022-03000-z
[24]

Saranya Krishnan SR, Siril EA. 2017. Auxin and nutritional stress coupled somatic embryogenesis in Oldenlandia umbellata L. Physiology and Molecular Biology of Plants 23:471−75

doi: 10.1007/s12298-017-0425-z
[25]

Sun W, Xu Z, Song C, Chen S. 2022. Herbgenomics: decipher molecular genetics of medicinal plants. The Innovation 3:100322

doi: 10.1016/j.xinn.2022.100322
[26]

Cseke LJ, Cseke SB, Podila GK. 2007. High efficiency poplar transformation. Plant Cell Reports 26:1529−38

doi: 10.1007/s00299-007-0365-0
[27]

Ji X, Yang B, Wang D. 2020. Achieving plant genome editing while bypassing tissue culture. Trends in Plant Science 25:427−29

doi: 10.1016/j.tplants.2020.02.011
[28]

Khan SA, Verma P, Banerjee S, Chaterjee A, Tandon S, et al. 2017. Pyrethrin accumulation in elicited hairy root cultures of Chrysanthemum cinerariaefolium. Plant Growth Regul 81:365−76

doi: 10.1007/s10725-016-0213-8
[29]

Thwe A, Valan Arasu M, Li X, Park CH, Kim SJ, et al. 2016. Effect of different Agrobacterium rhizogenes strains on hairy root induction and phenylpropanoid biosynthesis in Tartary buckwheat (Fagopyrum tataricum Gaertn). Frontiers in Microbiology 7:318

doi: 10.3389/fmicb.2016.00318
[30]

El-Esawi MA, Elkelish A, Elansary HO, Ali HM, Elshikh M, et al. 2017. Genetic transformation and hairy root induction enhance the antioxidant potential of Lactuca serriola L. Oxidative Medicine and Cellular Longevity 2017:5604746

doi: 10.1155/2017/5604746
[31]

Alcalde MA, Müller M, Munné-Bosch S, Landín M, Gallego PP, et al. 2022. Using machine learning to link the influence of transferred Agrobacterium rhizogenes genes to the hormone profile and morphological traits in Centella asiatica hairy roots. Frontiers in Plant Science 13:1001023

doi: 10.3389/fpls.2022.1001023
[32]

Goh D, Martin JGA, Banchini C, MacLean AM, Stefani F. 2022. RocTest: a standardized method to assess the performance of root organ cultures in the propagation of arbuscular mycorrhizal fungi. Frontiers in Microbiology 13:937912

doi: 10.3389/fmicb.2022.937912
[33]

Dixon DP, Edwards R. 2018. Protein-ligand fishing in planta for biologically active natural products using glutathione transferases. Frontiers in Plant Science 9:1659

doi: 10.3389/fpls.2018.01659
[34]

Ma H, Liu N, Sun X, Zhu M, Mao T, et al. 2023. Establishment of an efficient transformation system and its application in regulatory mechanism analysis of biological macromolecules in tea plants. International Journal of Biological Macromolecules 244:125372

doi: 10.1016/j.ijbiomac.2023.125372
[35]

Lopez-Agudelo JC, Goh FJ, Tchabashvili S, Huang YS, Huang CY, et al. 2025. Rhizobium rhizogenes A4-derived strains mediate hyper-efficient transient gene expression in Nicotiana benthamiana and other solanaceous plants. Plant Biotechnology Journal Early View

doi: 10.1111/pbi.70083
[36]

Cao X, XH, Song M, et al. 2023. Extremely simplified cut-dip-budding method for genetic transformation and gene editing in Taraxacum kok-saghyz. The Innovation Life 1(3):100040

doi: 10.59717/j.xinn-life.2023.100040
[37]

Lacroix B, Citovsky V. 2019. Pathways of DNA transfer to plants from Agrobacterium tumefaciens and related bacterial species. Annual Review of Phytopathology 57:231−51

doi: 10.1146/annurev-phyto-082718-100101