[1]

Zitha EZM, Magalhães DS, do Lago RC, Carvalho EEN, Pasqual M, et al. 2022. Changes in the bioactive compounds and antioxidant activity in red-fleshed dragon fruit during its development. Scientia Horticulturae 291:110611

doi: 10.1016/j.scienta.2021.110611
[2]

Arivalagan M, Karunakaran G, Roy TK, Dinsha M, Sindhu BC, et al. 2021. Biochemical and nutritional characterization of dragon fruit (Hylocereus species). Food Chemistry 353:129426

doi: 10.1016/j.foodchem.2021.129426
[3]

Yu ZH, Li JQ, He SC, Zhou XC, Wu JS, et al. 2021. Winemaking characteristics of red-fleshed dragon fruit from three locations in Guizhou Province, China. Food Science & Nutrition 9:2508−16

doi: 10.1002/fsn3.2196
[4]

Luu TTH, Le TL, Huynh N, Quintela-Alonso P. 2021. Dragon fruit: a review of health benefits and nutrients and its sustainable development under climate changes in Vietnam. Czech Journal of Food Sciences 39:71−94

doi: 10.17221/139/2020-cjfs
[5]

Magalhães DS, da Silva DM, Ramos JD, Salles Pio LA, Pasqual M, et al. 2019. Changes in the physical and physico-chemical characteristics of red-pulp dragon fruit during its development. Scientia Horticulturae 253:180−86

doi: 10.1016/j.scienta.2019.04.050
[6]

Jamaludin NA, Ding P, Hamid AA. 2011. Physico-chemical and structural changes of red-fleshed dragon fruit (Hylocereus polyrhizus) during fruit development. Journal of the Science of Food and Agriculture 91:278−85

doi: 10.1002/jsfa.4182
[7]

Gulcin İ. 2020. Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology 94:651−715

doi: 10.1007/s00204-020-02689-3
[8]

Martínez L, Bastida P, Castillo J, Ros G, Nieto G. 2019. Green alternatives to synthetic antioxidants, antimicrobials, nitrates, and nitrites in clean label Spanish chorizo. Antioxidants 8:184

doi: 10.3390/antiox8060184
[9]

Shahidi F, Janitha PK, Wanasundara PD. 1992. Phenolic antioxidants. Critical Reviews in Food Science and Nutrition 32:67−103

doi: 10.1080/10408399209527581
[10]

Marcolino E, Salavarria D, da Silva LGM, Almeida A, Oliveira da Silva FM, et al. 2024. Valorization of baobab seeds (Adansonia digitata) as a coffee-like beverage: evaluation of roasting time on bioactive compounds. Journal of Food Science and Technology 61:727−33

doi: 10.1007/s13197-023-05873-2
[11]

Sarques JD, Da Silva LGM, Garcia JAD, Boas BMV, Nachtigall AM. 2024. Physical-chemical characteristics of gluten-free cookies, chocolate flavor, made with cocoa bran, rice flour and corn starch. Observatório de la Economía Latinoamericana 22:e3193

doi: 10.55905/oelv22n2-078
[12]

da Costa CAR, do Nascimento SV, da Silva Valadares RB, da Silva LGM, Machado GGL, et al. 2024. Proteome and metabolome of Caryocar brasiliense camb. fruit and their interaction during development. Food Research International 191:114687

doi: 10.1016/j.foodres.2024.114687
[13]

Rodríguez García SL, Raghavan V. 2022. Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds—a review. Critical Reviews in Food Science & Nutrition 62:6446−66

doi: 10.1080/10408398.2021.1901651
[14]

Mahato N, Sinha M, Sharma K, Koteswararao R, Cho MH. 2019. Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. Foods 8:523

doi: 10.3390/foods8110523
[15]

de C Silva H, Silva DSN, Coelho RC, do N Oliveira R, Fortes TA, et al. 2023. Application of response surface methodology and simplex-centroid design to extraction of phenolic compounds from avocado (Persea americana) using UV-vis spectrophotometry. Revista Virtual de Química 15:683−93

doi: 10.21577/1984-6835.20220134
[16]

Chemat F, Vian MA, Cravotto G. 2012. Green extraction of natural products: concept and principles. International Journal of Molecular Sciences 13:8615−27

doi: 10.3390/ijms13078615
[17]

Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. 2017. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6:42

doi: 10.3390/plants6040042
[18]

Naderi F, Farajtabar A. 2016. Solvatochromism of fluorescein in aqueous aprotic solvents. Journal of Molecular Liquids 221:102−7

doi: 10.1016/j.molliq.2016.05.071
[19]

Dagostin JLA, Carpiné D, Corazza ML. 2015. Extraction of soybean oil using ethanol and mixtures with alkyl esters (biodiesel) as co-solvent: Kinetics and thermodynamics. Industrial Crops and Products 74:69−75

doi: 10.1016/j.indcrop.2015.04.054
[20]

Cannavacciuolo C, Pagliari S, Frigerio J, Giustra CM, Labra M, et al. 2023. Natural deep eutectic solvents (NADESs) combined with sustainable extraction techniques: a review of the green chemistry approach in food analysis. Foods 12:56

doi: 10.3390/foods12010056
[21]

Koraqi H, Petkoska AT, Khalid W, Sehrish A, Ambreen S, et al. 2023. Optimization of the extraction conditions of antioxidant phenolic compounds from strawberry fruits (Fragaria × ananassa Duch.) using response surface methodology. Food Analytical Methods 16:1030−42

doi: 10.1007/s12161-023-02469-6
[22]

Rodrigues, RRodrigues RP, Sousa AM, Gando-Ferreira LM, Quina MJ. 2023. Grape pomace as a natural source of phenolic compounds: solvent screening and extraction optimization. Molecules 28:2715

doi: 10.3390/molecules28062715
[23]

Naczk M, Shahidi F. 2006. Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis 41:1523−42

doi: 10.1016/j.jpba.2006.04.002
[24]

Liu R, Gao H, Chen H, Fang X, Wu W. 2019. Synergistic effect of 1-methylcyclopropene and carvacrol on preservation of red pitaya (Hylocereus polyrhizus). Food Chemistry 283:588−95

doi: 10.1016/j.foodchem.2019.01.066
[25]

Shafique M, Hussain S, Asif S, Pradhan V, Farooqui M. 2013. Thermodynamic characteristics of solvents: a review. Research Journal of Chemical Sciences 3:98−104

[26]

Taiz L, Zeiger E, Møller IM, Murphy A. 2015. Plant physiology and development, 6th edition. Sunderland: Sinauer Associates. 761 pp

[27]

Medina MB. 2011. Determination of the total phenolics in juices and superfruits by a novel chemical method. Journal of Functional Foods 3:79−87

doi: 10.1016/j.jff.2011.02.007
[28]

Hua Q, Chen C, Chen Z, Chen P, Ma Y, et al. 2016. Transcriptomic analysis reveals key genes related to betalain biosynthesis in pulp coloration of Hylocereus polyrhizus. Frontiers in Plant Science 6:1179

doi: 10.3389/fpls.2015.01179
[29]

Rodrigues LJ, da Graça Tomás M, de Paula NRF, Pinto DM, de Barros Vilas Boas EV, et al. 2022. Physicochemical and chemical modifications of baby pitaya during its development. Scientia Horticulturae 306:111460

doi: 10.1016/j.scienta.2022.111460
[30]

Biesaga M. 2011. Influence of extraction methods on stability of flavonoids. Journal of Chromatography A 1218(18):2505−12

doi: 10.1016/j.chroma.2011.02.059
[31]

Mohammed EA, Abdalla IG, Alfawaz MA, Mohammed MA, Al Maiman SA, et al. 2022. Effects of extraction solvents on the total phenolic content, total flavonoid content, and antioxidant activity in the aerial part of root vegetables. Agriculture 12(11):1820

doi: 10.3390/agriculture12111820
[32]

Alara OR, Abdurahman NH, Ukaegbu CI. 2021. Extraction of phenolic compounds: a review. Current Research in Food Science 4:200−14

doi: 10.1016/j.crfs.2021.03.011
[33]

Handa CL, de Lima FS, Guelfi MFG, Georgetti SR, Ida EI. 2016. Multi-response optimisation of the extraction solvent system for phenolics and antioxidant activities from fermented soy flour using a simplex-centroid design. Food Chemistry 197:175−84

doi: 10.1016/j.foodchem.2015.10.124
[34]

Gong Y, Liu X, He WH, Xu HG, Yuan F, et al. 2012. Investigation into the antioxidant activity and chemical composition of alcoholic extracts from defatted marigold (Tagetes erecta L.) residue. Fitoterapia 83:481−89

doi: 10.1016/j.fitote.2011.12.013
[35]

Munhoz VM, Longhini R, Souza JRP, Zequi JAC, Mello EVSL, et al. 2014. Extraction of flavonoids from Tagetes patula: process optimization and screening for biological activity. Revista Brasileira de Farmacognosia 24:576−83

doi: 10.1016/j.bjp.2014.10.001
[36]

Xiao W, Han L, Shi B. 2008. Microwave-assisted extraction of flavonoids from Radix Astragali. Separation and Purification Technology 62:614−18

doi: 10.1016/j.seppur.2008.03.025
[37]

Xie F, Chen C, Chen J, Yuan Y, Hua Q, et al. 2022. Metabolic profiling of sugars and organic acids, and expression analyses of metabolism-asso. Plants 11:694

doi: 10.3390/plant4s1105069
[38]

Kumorkiewicz-Jamro A, Świergosz T, Sutor K, Spórna-Kucab A, Wybraniec S. 2021. Multi-colored shades of betalains: recent advances in betacyanin chemistry. Natural Product Reports 38(12):2315−46

doi: 10.1039/D1NP00018G
[39]

Osorio S, Fernie AR. 2013. Biochemistry of fruit ripening. In The Molecular Biology and Biochemistry of Fruit Ripening, eds Seymour GB, Poole M, Giovannoni JJ, Tucker GA. US: John Wiley & Sons, Inc. pp 1–19. doi: 10.1002/9781118593714.ch1

[40]

Navarro-Cortez RO, Santiago-Saenz YO, López-Palestina CU, Gutiérrez-Tlahque J, Piloni-Martini J. 2023. Application of a simplex–centroid mixture design to evaluate the phenolic compound content and antioxidant potential of plants grown in Mexico. Foods 12:3479

doi: 10.3390/foods12183479
[41]

Magalhães LM, Barreiros L, Reis S, Segundo MA. 2014. Kinetic matching approach applied to ABTS assay for high-throughput determination of total antioxidant capacity of food products. Journal of Food Composition and Analysis 33:187−94

doi: 10.1016/j.jfca.2014.01.003
[42]

Boeing JS, Barizão ÉO, e Silva BC, Montanher PF, de Cinque Almeida V, et al. 2014. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chemistry Central Journal 8:48

doi: 10.1186/s13065-014-0048-1
[43]

de Morais Sousa M, de Lima A, Araujo BQ, dos Santos Rocha M, dos Santos Monção Filho E, et al. 2022. Multi-response optimization of a solvent system for the extraction of antioxidants polyphenols from jambolan fruit (Syzygium cumini (L.) Skeels). Food Analytical Methods 15:34−45

doi: 10.1007/s12161-021-02087-0
[44]

Chiang PS, Lee DJ, Whiteley CG, Huang CY. 2017. Antioxidant phenolic compounds from Pinus morrisconicola using compressional-puffing pretreatment and water–ethanol extraction: optimization of extraction parameters. Journal of the Taiwan Institute of Chemical Engineers 70:7−14

doi: 10.1016/j.jtice.2016.10.010
[45]

dos Santos C, Mizobucchi AL, Escaramboni B, Lopes BP, Angolini CFF, et al. 2020. Optimization of Eugenia punicifolia (Kunth) D. C. leaf extraction using a simplex centroid design focused on extracting phenolics with antioxidant and antiproliferative activities. BMC Chemistry 14:34

doi: 10.1186/s13065-020-00686-2
[46]

Jdaini K, Alla F, Mansouri F, Parmar A, Elhoumaizi MA. 2023. Optimizing the extraction of phenolic antioxidants from date palm fruit by simplex-centroid solvent mixture design. Heliyon 9:e12738

doi: 10.1016/j.heliyon.2022.e12738
[47]

Zwingelstein M, Draye M, Besombes JL, Piot C, Chatel G. 2020. Viticultural wood waste as a source of polyphenols of interest: opportunities and perspectives through conventional and emerging extraction methods. Waste Management 102:782−94

doi: 10.1016/j.wasman.2019.11.034
[48]

da Silva LGM, da Costa CAR, Batista GA, Amorim KA, de Abreu DJM, et al. 2025. Effect of light supplementation on pitaya productivity and quality during the off-season. Technology in Horticulture 5:e022

doi: 10.48130/tihort-0025-0018