[1]

Iman M, Arabnia HR, Rasheed K. 2023. A review of deep transfer learning and recent advancements. Technologies 11(2):40

doi: 10.3390/technologies11020040
[2]

Torrey L, Shavlik J. 2010. Transfer learning. In Handbook of research on machine learning applications and trends: algorithms, methods, and techniques, eds. Soria E, Martín-Guerrero JD, Martinez M, Magdalena R, Serrano AJ. USA: IGI Global Scientific Publishing. pp. 242−64. doi: 10.4018/978-1-60566-766-9.ch011

[3]

Li S, Cai TT, Li H. 2022. Transfer learning for high-dimensional linear regression: prediction, estimation and minimax optimality. Journal of the Royal Statistical Society Series B: Statistical Methodology 84(1):149−73

doi: 10.1111/rssb.12479
[4]

Tian Y, Feng Y. 2023. Transfer learning under high-dimensional generalized linear models. Journal of the American Statistical Association 118(544):2684−97

doi: 10.1080/01621459.2022.2071278
[5]

Pan SJ, Yang Q. 2010. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering 22(10):1345−59

doi: 10.1109/TKDE.2009.191
[6]

Ribani R, Marengoni M. 2019. A survey of transfer learning for convolutional neural networks. 2019 32nd SIBGRAPI conference on graphics, patterns and images tutorials (SIBGRAPI-T), Rio de Janeiro, Brazil, 2019. USA: IEEE. pp.47−57. doi: 10.1109/SIBGRAPI-T.2019.00010

[7]

Tan C, Sun F, Kong T, Zhang W, Yang C, et al. 2018. A survey on deep transfer learning. Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks Proceedings. Cham: Springer. pp. 270−79. doi: 10.1007/978-3-030-01424-7_27

[8]

López-García G, Jerez JM, Franco L, Veredas FJ. 2020. Transfer learning with convolutional neural networks for cancer survival prediction using gene-expression data. PLoS One 15(3):e0230536

doi: 10.1371/journal.pone.0230536
[9]

Muneeb M, Feng S, Henschel A. 2022. Transfer learning for genotype–phenotype prediction using deep learning models. BMC Bioinformatics 23(1):511

doi: 10.1186/s12859-022-05036-8
[10]

Altmann A, Toloşi L, Sander O, Lengauer T. 2010. Permutation importance: a corrected feature importance measure. Bioinformatics 26(10):1340−47

doi: 10.1093/bioinformatics/btq134
[11]

Mi X, Zou B, Zou F, Hu J. 2021. Permutation-based identification of important biomarkers for complex diseases via machine learning models. Nature communications 12(1):3008

doi: 10.1038/s41467-021-22756-2
[12]

Liu L, Meng Q, Weng C, Lu Q, Wang T, et al. 2022. Explainable deep transfer learning model for disease risk prediction using high-dimensional genomic data. PLoS Computational Biology 18(7):e1010328

doi: 10.1371/journal.pcbi.1010328
[13]

Wang J, Zhang H, Wang J, Pu Y, Pal NR. 2021. Feature selection using a neural network with group lasso regularization and controlled redundancy. IEEE Transactions on Neural Networks and Learning Systems 32(3):1110−23

doi: 10.1109/TNNLS.2020.2980383
[14]

Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, et al. 2020. A comprehensive survey on transfer learning. Proceedings of the IEEE 109(1):43−76

doi: 10.1109/JPROC.2020.3004555
[15]

Kingma DP. 2014. Adam: a method for stochastic optimization. arXiv Preprint

doi: 10.48550/arXiv.1412.6980
[16]

Mathers CD, Loncar D. 2006. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine 3(11):e442

doi: 10.1371/journal.pmed.0030442
[17]

Liu JZ, Tozzi F, Waterworth DM, Pillai SG, Muglia P, et al. 2010. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nature Genetics 42(5):436−40

doi: 10.1038/ng.572
[18]

Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, et al. 2018. The UK Biobank resource with deep phenotyping and genomic data. Nature 562:203−9

doi: 10.1038/s41586-018-0579-z
[19]

Weiss RB, Baker TB, Cannon DS, von Niederhausern A, Dunn DM, et al. 2008. A candidate gene approach identifies the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction. PLoS Genetics 4(7):e1000125

doi: 10.1371/journal.pgen.1000125
[20]

Zeiger JS, Haberstick BC, Schlaepfer I, Collins AC, Corley RP, et al. 2008. The neuronal nicotinic receptor subunit genes (CHRNA6 and CHRNB3) are associated with subjective responses to tobacco. Human Molecular Genetics 17(5):724−34

doi: 10.1093/hmg/ddm344
[21]

Zhang X, Lan T, Wang T, Xue W, Tong X, et al. 2019. Considering genetic heterogeneity in the association analysis finds genes associated with nicotine dependence. Frontiers in Genetics 10:448

doi: 10.3389/fgene.2019.00448
[22]

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics 81(3):559−75

doi: 10.1086/519795
[23]

Yin L, Zhang H, Tang Z, Xu J, Yin D, et al. 2021. rMVP: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics, proteomics & bioinformatics 19(4):619−28

doi: 10.1016/j.gpb.2020.10.007
[24]

Cody T, Beling PA. 2023. A systems theory of transfer learning. IEEE Systems Journal 17(1):26−37

doi: 10.1109/JSYST.2022.3224650
[25]

Tripuraneni N, Jordan M, Jin C. 2020. On the theory of transfer learning: the importance of task diversity. Advances in Neural Information Processing Systems: Annual Conference on Neural Information Processing Systems (NeurIPS 2020). virtual. pp. 7852−62

[26]

Yang L, Hanneke S, Carbonell J. 2013. A theory of transfer learning with applications to active learning. Machine Learning 90:161−89

doi: 10.1007/s10994-012-5310-y