[1]

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860−921

doi: 10.1038/35057062
[2]

Thuronyi BW, Koblan LW, Levy JM, Yeh WH, Zheng C, et al. 2019. Continuous evolution of base editors with expanded target compatibility and improved activity. Nature Biotechnology 37:1070−79

doi: 10.1038/s41587-019-0193-0
[3]

Shafin K, Pesout T, Lorig-Roach R, Haukness M, Olsen HE, et al. 2020. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Nature Biotechnology 38:1044−53

doi: 10.1038/s41587-020-0503-6
[4]

Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods 18:170−75

doi: 10.1038/s41592-020-01056-5
[5]

Rautiainen M, Nurk S, Walenz BP, Logsdon GA, Porubsky D, et al. 2023. Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nature Biotechnology 41:1474−82

doi: 10.1038/s41587-023-01662-6
[6]

Kolmogorov M, Yuan J, Lin Y, Pevzner PA. 2019. Assembly of long, error-prone reads using repeat graphs. Nature Biotechnology 37:540−46

doi: 10.1038/s41587-019-0072-8
[7]

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, et al. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research 27:722−36

doi: 10.1101/gr.215087.116
[8]

Yu W, Luo H, Yang J, Zhang S, Jiang H, et al. 2024. Comprehensive assessment of 11 de novo HiFi assemblers on complex eukaryotic genomes and metagenomes. Genome Research 34:326−40

doi: 10.1101/gr.278232.123
[9]

Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, et al. 2022. The complete sequence of a human genome. Science 376:44−53

doi: 10.1126/science.abj6987
[10]

Yang C, Zhou Y, Song Y, Wu D, Zeng Y, et al. 2023. The complete and fully-phased diploid genome of a male Han Chinese. Cell Research 33:745−61

doi: 10.1038/s41422-023-00849-5
[11]

He Y, Chu Y, Guo S, Hu J, Li R, et al. 2023. T2T-YAO: a telomere-to-telomere assembled diploid reference genome for Han Chinese. Genomics Proteomics & Bioinformatics 21:1085−100

doi: 10.1016/j.gpb.2023.08.001
[12]

Shang L, He W, Wang T, Yang Y, Xu Q, et al. 2023. A complete assembly of the rice Nipponbare reference genome. Molecular Plant 16:1232−36

doi: 10.1016/j.molp.2023.08.003
[13]

Chen J, Wang Z, Tan K, Huang W, Shi J, et al. 2023. A complete telomere-to-telomere assembly of the maize genome. Nature Genetics 55:1221−31

doi: 10.1038/s41588-023-01419-6
[14]

Chen W, Wang X, Sun J, Wang X, Zhu Z, et al. 2024. Two telomere-to-telomere gapless genomes reveal insights into Capsicum evolution and capsaicinoid biosynthesis. Nature Communications 15:4295

doi: 10.1038/s41467-024-48643-0
[15]

Huang G, Bao Z, Feng L, Zhai J, Wendel JF, et al. 2024. A telomere-to-telomere cotton genome assembly reveals centromere evolution and a Mutator transposon-linked module regulating embryo development. Nature Genetics 56:1953−63

doi: 10.1038/s41588-024-01877-6
[16]

Cai Y, Gao X, Mao J, Liu Y, Tong L, et al. 2024. Genome sequencing of 'Fuji' apple clonal varieties reveals genetic mechanism of the spur-type morphology. Nature Communications 15:10082

doi: 10.1038/s41467-024-54428-2
[17]

Wu H, Luo LY, Zhang YH, Zhang CY, Huang JH, et al. 2024. Telomere-to-telomere genome assembly of a male goat reveals variants associated with cashmere traits. Nature Communications 15:10041

doi: 10.1038/s41467-024-54188-z
[18]

Yoo D, Rhie A, Hebbar P, Antonacci F, Logsdon GA, et al. 2025. Complete sequencing of ape genomes. Nature 641:401−18

doi: 10.1038/s41586-025-08816-3
[19]

Wang L, Zhang M, Li M, Jiang X, Jiao W, et al. 2023. A telomere-to-telomere gap-free assembly of soybean genome. Molecular Plant 16:1711−14

doi: 10.1016/j.molp.2023.08.012
[20]

Liao WW, Asri M, Ebler J, Doerr D, Haukness M, et al. 2023. A draft human pangenome reference. Nature 617:312−24

doi: 10.1038/s41586-023-05896-x
[21]

Li N, He Q, Wang J, Wang B, Zhao J, et al. 2023. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nature Genetics 55:852−60

doi: 10.1038/s41588-023-01340-y
[22]

Jiang YF, Wang S, Wang CL, Xu RH, Wang WW, et al. 2023. Pangenome obtained by long-read sequencing of 11 genomes reveal hidden functional structural variants in pigs. iScience 26:106119

doi: 10.1016/j.isci.2023.106119
[23]

Bian P, Li J, Zhou S, Wang X, Gong M, et al. 2024. A graph-based goat pangenome reveals structural variations involved in domestication and adaptation. Molecular Biology and Evolution 41:msae251

doi: 10.1093/molbev/msae251
[24]

Guo L, Wang X, Ayhan DH, Rhaman MS, Yan M, et al. 2025. Super pangenome of Vitis empowers identification of downy mildew resistance genes for grapevine improvement. Nature Genetics 57:741−53

doi: 10.1038/s41588-025-02111-7
[25]

Erwin GS, Gürsoy G, Al-Abri R, Suriyaprakash A, Dolzhenko E, et al. 2023. Recurrent repeat expansions in human cancer genomes. Nature 613:96−102

doi: 10.1038/s41586-022-05515-1
[26]

Burren OS, Dhindsa RS, Deevi SVV, Wen S, Nag A, et al. 2024. Genetic architecture of telomere length in 462,666 UK Biobank whole-genome sequences. Nature Genetics 56:1832−40

doi: 10.1038/s41588-024-01884-7
[27]

Mastrorosa FK, Rozanski AN, Harvey WT, Knuth J, Garcia G, et al. 2024. Complete chromosome 21 centromere sequences from a Down syndrome family reveal size asymmetry and differences in kinetochore attachment. bioRxiv Preprint

doi: 10.1101/2024.02.25.581464
[28]

McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, et al. 2017. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171:1259−1271.e11

doi: 10.1016/j.cell.2017.10.001
[29]

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094−100

doi: 10.1093/bioinformatics/bty191
[30]

Li H. 2021. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37:4572−74

doi: 10.1093/bioinformatics/btab705
[31]

Jain C, Rhie A, Hansen NF, Koren S, Phillippy AM. 2022. Long-read mapping to repetitive reference sequences using Winnowmap2. Nature Methods 19:705−10

doi: 10.1038/s41592-022-01457-8
[32]

Yang J, Zhao X, Jiang H, Yang Y, Hou Y, et al. 2023. RAfilter: an algorithm for detecting and filtering false-positive alignments in repetitive genomic regions. Horticulture Research 10:uhac288

doi: 10.1093/hr/uhac288
[33]

Xu D, Song Y, Zhao X, Gong D, Yang Y, et al. 2022. RAviz: a visualization tool for detecting false-positive alignments in repetitive genomic regions. Horticulture Research 9:uhac161

doi: 10.1093/hr/uhac161
[34]

Wen H, Pan W. 2023. Reference-guided automatic assembly of genomic tandem repeats with only HiFi and Hi-C data enables population-level analysis. bioRxiv Preprint

doi: 10.1101/2023.12.07.570710
[35]

Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31:3350−52

doi: 10.1093/bioinformatics/btv383
[36]

Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, et al. 2016. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Systems 3:99−101

doi: 10.1016/j.cels.2015.07.012
[37]

Zhang X, Zhang S, Zhao Q, Ming R, Tang H. 2019. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nature Plants 5:833−45

doi: 10.1038/s41477-019-0487-8
[38]

Zeng X, Yi Z, Zhang X, Du Y, Li Y, et al. 2024. Chromosome-level scaffolding of haplotype-resolved assemblies using Hi-C data without reference genomes. Nature Plants 10:1184−200

doi: 10.1038/s41477-024-01755-3
[39]

Vrček L, Bresson X, Laurent T, Schmitz M, Šikić M. 2022. Learning to untangle genome assembly with graph convolutional networks. ArXiv Preprint

doi: 10.48550/arXiv.2206.00668
[40]

Bao Z, Li C, Li G, Wang P, Peng Z, et al. 2022. Genome architecture and tetrasomic inheritance of autotetraploid potato. Molecular Plant 15:1211−26

doi: 10.1016/j.molp.2022.06.009
[41]

Chen LX, Anantharaman K, Shaiber A, Eren AM, Banfield JF. 2020. Accurate and complete genomes from metagenomes. Genome Research 30:315−33

doi: 10.1101/gr.258640.119
[42]

Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, et al. 2020. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nature Methods 17:1103−10

doi: 10.1038/s41592-020-00971-x
[43]

Bickhart DM, Kolmogorov M, Tseng E, Portik DM, Korobeynikov A, et al. 2022. Generating lineage-resolved, complete metagenome-assembled genomes from complex microbial communities. Nature Biotechnology 40:711−19

doi: 10.1038/s41587-021-01130-z
[44]

Feng X, Cheng H, Portik D, Li H. 2022. Metagenome assembly of high-fidelity long reads with hifiasm-meta. Nature Methods 19:671−74

doi: 10.1038/s41592-022-01478-3
[45]

Benoit G, Raguideau S, James R, Phillippy AM, Chikhi R, et al. 2024. High-quality metagenome assembly from long accurate reads with metaMDBG. Nature Biotechnology 42:1378−83

doi: 10.1038/s41587-023-01983-6
[46]

Teng W, Chen M, Chen S, Xia T, Zhou Y, et al. 2024. Inappropriate application of mapping algorithms results in length-dependent gene abundances in metagenomic analysis. Genomics Communications 1:e007

doi: 10.48130/gcomm-0024-0007
[47]

Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, et al. 2014. Binning metagenomic contigs by coverage and composition. Nature Methods 11:1144−46

doi: 10.1038/nmeth.3103
[48]

Kang DD, Froula J, Egan R, Wang Z. 2015. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3:e1165

doi: 10.7717/peerj.1165
[49]

Wu YW, Tang YH, Tringe SG, Simmons BA, Singer SW. 2014. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2:26

doi: 10.1186/2049-2618-2-26
[50]

Marbouty M, Cournac A, Flot JF, Marie-Nelly H, Mozziconacci J, et al. 2014. Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms. eLife 3:e03318

doi: 10.7554/eLife.03318
[51]

Lämke J, Bäurle I. 2017. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biology 18:124

doi: 10.1186/s13059-017-1263-6
[52]

Lu YX, Yang JB, Li CY, Tian YH, Chang RR, et al. 2024. Efficient and easy-to-use capturing three-dimensional metagenome interactions with GutHi-C. iMeta 3:e227

[53]

DeMaere MZ, Darling AE. 2019. bin3C: exploiting Hi-C sequencing data to accurately resolve metagenome-assembled genomes. Genome Biology 20:46

doi: 10.1186/s13059-019-1643-1
[54]

Du Y, Sun F. 2022. HiCBin: binning metagenomic contigs and recovering metagenome-assembled genomes using Hi-C contact maps. Genome Biology 23:63

doi: 10.1186/s13059-022-02626-w
[55]

Baudry L, Foutel-Rodier T, Thierry A, Koszul R, Marbouty M. 2019. MetaTOR: a computational pipeline to recover high-quality metagenomic bins from mammalian gut proximity-ligation (meta3C) libraries. Frontiers in Genetics 10:753

doi: 10.3389/fgene.2019.00753