| [1] |
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. 2001. Initial sequencing and analysis of the human genome. |
| [2] |
Thuronyi BW, Koblan LW, Levy JM, Yeh WH, Zheng C, et al. 2019. Continuous evolution of base editors with expanded target compatibility and improved activity. |
| [3] |
Shafin K, Pesout T, Lorig-Roach R, Haukness M, Olsen HE, et al. 2020. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. |
| [4] |
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. |
| [5] |
Rautiainen M, Nurk S, Walenz BP, Logsdon GA, Porubsky D, et al. 2023. Telomere-to-telomere assembly of diploid chromosomes with Verkko. |
| [6] |
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. 2019. Assembly of long, error-prone reads using repeat graphs. |
| [7] |
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, et al. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. |
| [8] |
Yu W, Luo H, Yang J, Zhang S, Jiang H, et al. 2024. Comprehensive assessment of 11 de novo HiFi assemblers on complex eukaryotic genomes and metagenomes. |
| [9] |
Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, et al. 2022. The complete sequence of a human genome. |
| [10] |
Yang C, Zhou Y, Song Y, Wu D, Zeng Y, et al. 2023. The complete and fully-phased diploid genome of a male Han Chinese. |
| [11] |
He Y, Chu Y, Guo S, Hu J, Li R, et al. 2023. T2T-YAO: a telomere-to-telomere assembled diploid reference genome for Han Chinese. |
| [12] |
Shang L, He W, Wang T, Yang Y, Xu Q, et al. 2023. A complete assembly of the rice Nipponbare reference genome. |
| [13] |
Chen J, Wang Z, Tan K, Huang W, Shi J, et al. 2023. A complete telomere-to-telomere assembly of the maize genome. |
| [14] |
Chen W, Wang X, Sun J, Wang X, Zhu Z, et al. 2024. Two telomere-to-telomere gapless genomes reveal insights into Capsicum evolution and capsaicinoid biosynthesis. |
| [15] |
Huang G, Bao Z, Feng L, Zhai J, Wendel JF, et al. 2024. A telomere-to-telomere cotton genome assembly reveals centromere evolution and a Mutator transposon-linked module regulating embryo development. |
| [16] |
Cai Y, Gao X, Mao J, Liu Y, Tong L, et al. 2024. Genome sequencing of 'Fuji' apple clonal varieties reveals genetic mechanism of the spur-type morphology. |
| [17] |
Wu H, Luo LY, Zhang YH, Zhang CY, Huang JH, et al. 2024. Telomere-to-telomere genome assembly of a male goat reveals variants associated with cashmere traits. |
| [18] |
Yoo D, Rhie A, Hebbar P, Antonacci F, Logsdon GA, et al. 2025. Complete sequencing of ape genomes. |
| [19] |
Wang L, Zhang M, Li M, Jiang X, Jiao W, et al. 2023. A telomere-to-telomere gap-free assembly of soybean genome. |
| [20] |
Liao WW, Asri M, Ebler J, Doerr D, Haukness M, et al. 2023. A draft human pangenome reference. |
| [21] |
Li N, He Q, Wang J, Wang B, Zhao J, et al. 2023. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. |
| [22] |
Jiang YF, Wang S, Wang CL, Xu RH, Wang WW, et al. 2023. Pangenome obtained by long-read sequencing of 11 genomes reveal hidden functional structural variants in pigs. |
| [23] |
Bian P, Li J, Zhou S, Wang X, Gong M, et al. 2024. A graph-based goat pangenome reveals structural variations involved in domestication and adaptation. |
| [24] |
Guo L, Wang X, Ayhan DH, Rhaman MS, Yan M, et al. 2025. Super pangenome of Vitis empowers identification of downy mildew resistance genes for grapevine improvement. |
| [25] |
Erwin GS, Gürsoy G, Al-Abri R, Suriyaprakash A, Dolzhenko E, et al. 2023. Recurrent repeat expansions in human cancer genomes. |
| [26] |
Burren OS, Dhindsa RS, Deevi SVV, Wen S, Nag A, et al. 2024. Genetic architecture of telomere length in 462,666 UK Biobank whole-genome sequences. |
| [27] |
Mastrorosa FK, Rozanski AN, Harvey WT, Knuth J, Garcia G, et al. 2024. Complete chromosome 21 centromere sequences from a Down syndrome family reveal size asymmetry and differences in kinetochore attachment. |
| [28] |
McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, et al. 2017. Allele-specific HLA loss and immune escape in lung cancer evolution. |
| [29] |
Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. |
| [30] |
Li H. 2021. New strategies to improve minimap2 alignment accuracy. |
| [31] |
Jain C, Rhie A, Hansen NF, Koren S, Phillippy AM. 2022. Long-read mapping to repetitive reference sequences using Winnowmap2. |
| [32] |
Yang J, Zhao X, Jiang H, Yang Y, Hou Y, et al. 2023. RAfilter: an algorithm for detecting and filtering false-positive alignments in repetitive genomic regions. |
| [33] |
Xu D, Song Y, Zhao X, Gong D, Yang Y, et al. 2022. RAviz: a visualization tool for detecting false-positive alignments in repetitive genomic regions. |
| [34] |
Wen H, Pan W. 2023. Reference-guided automatic assembly of genomic tandem repeats with only HiFi and Hi-C data enables population-level analysis. |
| [35] |
Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of de novo genome assemblies. |
| [36] |
Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, et al. 2016. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. |
| [37] |
Zhang X, Zhang S, Zhao Q, Ming R, Tang H. 2019. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. |
| [38] |
Zeng X, Yi Z, Zhang X, Du Y, Li Y, et al. 2024. Chromosome-level scaffolding of haplotype-resolved assemblies using Hi-C data without reference genomes. |
| [39] |
Vrček L, Bresson X, Laurent T, Schmitz M, Šikić M. 2022. Learning to untangle genome assembly with graph convolutional networks. |
| [40] |
Bao Z, Li C, Li G, Wang P, Peng Z, et al. 2022. Genome architecture and tetrasomic inheritance of autotetraploid potato. |
| [41] |
Chen LX, Anantharaman K, Shaiber A, Eren AM, Banfield JF. 2020. Accurate and complete genomes from metagenomes. |
| [42] |
Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, et al. 2020. metaFlye: scalable long-read metagenome assembly using repeat graphs. |
| [43] |
Bickhart DM, Kolmogorov M, Tseng E, Portik DM, Korobeynikov A, et al. 2022. Generating lineage-resolved, complete metagenome-assembled genomes from complex microbial communities. |
| [44] |
Feng X, Cheng H, Portik D, Li H. 2022. Metagenome assembly of high-fidelity long reads with hifiasm-meta. |
| [45] |
Benoit G, Raguideau S, James R, Phillippy AM, Chikhi R, et al. 2024. High-quality metagenome assembly from long accurate reads with metaMDBG. |
| [46] |
Teng W, Chen M, Chen S, Xia T, Zhou Y, et al. 2024. Inappropriate application of mapping algorithms results in length-dependent gene abundances in metagenomic analysis. |
| [47] |
Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, et al. 2014. Binning metagenomic contigs by coverage and composition. |
| [48] |
Kang DD, Froula J, Egan R, Wang Z. 2015. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. |
| [49] |
Wu YW, Tang YH, Tringe SG, Simmons BA, Singer SW. 2014. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. |
| [50] |
Marbouty M, Cournac A, Flot JF, Marie-Nelly H, Mozziconacci J, et al. 2014. Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms. |
| [51] |
Lämke J, Bäurle I. 2017. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. |
| [52] |
Lu YX, Yang JB, Li CY, Tian YH, Chang RR, et al. 2024. Efficient and easy-to-use capturing three-dimensional metagenome interactions with GutHi-C. iMeta 3:e227 |
| [53] |
DeMaere MZ, Darling AE. 2019. bin3C: exploiting Hi-C sequencing data to accurately resolve metagenome-assembled genomes. |
| [54] |
Du Y, Sun F. 2022. HiCBin: binning metagenomic contigs and recovering metagenome-assembled genomes using Hi-C contact maps. |
| [55] |
Baudry L, Foutel-Rodier T, Thierry A, Koszul R, Marbouty M. 2019. MetaTOR: a computational pipeline to recover high-quality metagenomic bins from mammalian gut proximity-ligation (meta3C) libraries. |