[1]

Bag P, Ivanov AG, Huner NP, Jansson S. 2025. Photosynthetic advantages of conifers in the boreal forest. Trends in Plant Science 30:409−23

doi: 10.1016/j.tplants.2024.10.018
[2]

Öquist G, Huner NPA. 2003. Photosynthesis of overwintering evergreen plants. Annual Review of Plant Biology 54:329−55

doi: 10.1146/annurev.arplant.54.072402.115741
[3]

Verhoeven A. 2014. Sustained energy dissipation in winter evergreens. New Phytologist 201:57−65

doi: 10.1111/nph.12466
[4]

Walter-McNeill A, Garcia MA, Logan BA, Bombard DM, Reblin JS, et al. 2021. Wide variation of winter-induced sustained thermal energy dissipation in conifers: a common-garden study. Oecologia 197:589−98

doi: 10.1007/s00442-021-05038-y
[5]

Demmig-Adams B, Adams WW, III. 2006. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytologist 172:11−21

doi: 10.1111/j.1469-8137.2006.01835.x
[6]

Demmig-Adams B, Adams WW, III. 1992. Photoprotection and other responses of plants to high light stress. Annual Review of Plant Biology 43:599−626

doi: 10.1146/annurev.pp.43.060192.003123
[7]

Niyogi KK, Arthur, Grossman R, Björkman O. 1998. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. The Plant Cell 10:1121−34

doi: 10.1105/tpc.10.7.1121
[8]

Adams WW, III, Demmig-Adams B, Logan BA, Barker DH, Osmond CB. 1999. Rapid changes in xanthophyll cycle-dependent energy dissipation and photosystem II efficiency in two vines, Stephania japonica and Smilax australis, growing in the understory of an open Eucalyptus forest. Plant, Cell & Environment 22:125−36

doi: 10.1046/j.1365-3040.1999.00369.x
[9]

Esteban R, Barrutia O, Artetxe U, Fernández-Marín B, Hernández A, et al. 2015. Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach. New Phytologist 206:268−80

doi: 10.1111/nph.13186
[10]

Ottander C, Campbell D, Öquist G. 1995. Seasonal changes in photosystem II organisation and pigment composition in Pinus sylvestris. Planta 197:176−83

doi: 10.1007/BF00239954
[11]

González-Zurdo P, Escudero A, Babiano J, García-Ciudad A, Mediavilla S. 2016. Costs of leaf reinforcement in response to winter cold in evergreen species. Tree Physiology 36:273−86

doi: 10.1093/treephys/tpv134
[12]

Yang Q, Blanco NE, Hermida-Carrera C, Lehotai N, Hurry V, et al. 2020. Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring. Nature Communications 11:128

doi: 10.1038/s41467-019-13954-0
[13]

Han Q, Kawasaki T, Nakano T, Chiba Y. 2008. Leaf-age effects on seasonal variability in photosynthetic parameters and its relationships with leaf mass per area and leaf nitrogen concentration within a Pinus densiflora crown. Tree Physiology 28:551−58

doi: 10.1093/treephys/28.4.551
[14]

Han Q, Katahata S, Kakubari Y, Mukai Y. 2004. Seasonal changes in the xanthophyll cycle and antioxidants in sun-exposed and shaded parts of the crown of Cryptomeria japonica in relation to rhodoxanthin accumulation during cold acclimation. Tree Physiology 24:609−16

doi: 10.1093/treephys/24.6.609
[15]

Miyazawa SI, Terashima I. 2001. Slow development of leaf photosynthesis in an evergreen broad-leaved tree, Castanopsis sieboldii: relationships between leaf anatomical characteristics and photosynthetic rate. Plant, Cell & Environment 24:279−91

doi: 10.1046/j.1365-3040.2001.00682.x
[16]

Martínez-Vilalta J, Sala A, Asensio D, Galiano L, Hoch G, et al. 2016. Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecological Monographs 86:495−516

doi: 10.1002/ecm.1231
[17]

Han Q, Kabeya D, Inagaki Y, Kawasaki T, Satake A. 2024. Carbon use strategies in shoot and acorn growth of two evergreen broadleaf trees unraveled by seasonal carbohydrate measurements and carbon isotope analysis. Tree Physiology 44:221−31

doi: 10.1093/treephys/tpad072
[18]

Hughes NM. 2011. Winter leaf reddening in 'evergreen' species. New Phytologist 190:573−81

doi: 10.1111/j.1469-8137.2011.03662.x
[19]

Han Q, Shinohara K, Kakubari Y, Mukai Y. 2003. Photoprotective role of rhodoxanthin during cold acclimation in Cryptomeria japonica. Plant, Cell & Environment 26:715−23

doi: 10.1046/j.1365-3040.2003.01008.x
[20]

Weger HG, Silim SN, Guy RD. 1993. Photosynthetic acclimation to low temperature by western red cedar seedlings. Plant, Cell & Environment 16:711−17

doi: 10.1111/j.1365-3040.1993.tb00490.x
[21]

Ida K, Saito F, Takeda S. 1991. Isomers of rhodoxanthin in reddish brown leaves of gymnosperms and effect of daylight intensity on the contents of pigments during autumnal coloration. The Botanical Magazine = Shokubutsu-Gaku-Zasshi 104:157−69

doi: 10.1007/BF02493256
[22]

Czeczuga B. 1987. Different rhodoxanthin contents in the leaves of gymnosperms grown under various light intensities. Biochemical Systematics and Ecology 15:531−33

doi: 10.1016/0305-1978(87)90100-1
[23]

Royer J, Shanklin J, Balch-Kenney N, Mayorga M, Houston P, et al. 2020. Rhodoxanthin synthase from honeysuckle; a membrane diiron enzyme catalyzes the multistep conversation of β-carotene to rhodoxanthin. Science Advances 6:eaay9226

doi: 10.1126/sciadv.aay9226
[24]

Katahata SI, Katoh M, Iio A, Mukai Y. 2022. Photoinhibition and pigment composition in relation to needle reddening in sun-exposed Cryptomeria japonica at different altitudes in winter. Journal of Forest Research 27:148−57

doi: 10.1080/13416979.2021.2011561
[25]

Ida K. 1981. Eco-physiological studies on the response of taxodiaceous conifers to shading, with special reference to the behaviour of leaf pigments. I. Distribution of carotenoids in green and autumnal reddish brown leaves of gymnosperms. The Botanical Magazine 94:41−54

doi: 10.1007/BF02490202
[26]

Fujino T, Katsushi K, Yokoyama TT, Hamanaka T, Harazono Y, et al. 2024. A chromosome-level genome assembly of a model conifer plant, the Japanese cedar, Cryptomeria japonica D. Don. BMC Genomics 25:1039

doi: 10.1186/s12864-024-10929-4
[27]

Tsumura Y. 2023. Review: Genetic structure and local adaptation in natural forests of Cryptomeria japonica. Ecological Research 38:64−73

doi: 10.1111/1440-1703.12320
[28]

Nakahata R, Azuma WA, Tanabe T, Kawai K, Hiura T. 2024. Genotypic variations appear in fine root morphological traits of Cryptomeria japonica trees grown in a common garden. Ecological Research 39:717−29

doi: 10.1111/1440-1703.12492
[29]

Saito T, Kusumoto N, Hiura T. 2023. Relation of leaf terpene contents to terpene emission profiles in Japanese cedar (Cryptomeria japonica). Ecological Research 38:74−82

doi: 10.1111/1440-1703.12323
[30]

Hiura T, Yoshioka H, Matsunaga SN, Saito T, Kohyama TI, et al. 2021. Diversification of terpenoid emissions proposes a geographic structure based on climate and pathogen composition in Japanese cedar. Scientific Reports 11:8307

doi: 10.1038/s41598-021-87810-x
[31]

Azuma WA, Kawai K, Tanabe T, Nakahata R, Hiura T. 2023. Intraspecific variation in growth-related traits—from leaf to whole-tree—in three provenances of Cryptomeria japonica canopy trees grown in a common garden. Ecological Research 38:83−97

doi: 10.1111/1440-1703.12349
[32]

Nishizono T, Kitahara F, Iehara T, Mitsuda Y. 2014. Geographical variation in age-height relationships for dominant trees in Japanese cedar (Cryptomeria japonica D. Don) forests in Japan. Journal of Forest Research 19:305−16

doi: 10.1007/s10310-013-0416-z
[33]

Uchiyama K, Ujino-Ihara T, Nakao K, Toriyama J, Hashimoto S, et al. 2025. Climate-associated genetic variation and projected genetic offsets for Cryptomeria japonica D. Don under future climate scenarios. Evolutionary Applications 18:e70077

doi: 10.1111/eva.70077
[34]

Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24:1−15

doi: 10.1104/pp.24.1.1
[35]

Gilmore AM, Yamamoto HY. 1991. Resolution of lutein and Zeaxanthin using a non-endcapped, lightly carbon-loaded C18 high-performance liquid chromatographic column. Journal of Chromatography A 543:137−45

doi: 10.1016/S0021-9673(01)95762-0
[36]

Genty B, Briantais JM, Baker NR. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects 990:87−92

doi: 10.1016/S0304-4165(89)80016-9
[37]

Thornley JHM. 1976. Mathematical models in plant physiology. London, New York: Academic Press Inc. xiii, 318 pp

[38]

Valladares F, Sanchez-Gomez D, Zavala MA. 2006. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology 94:1103−16

doi: 10.1111/j.1365-2745.2006.01176.x
[39]

Esteban R, Moran JF, Becerril JM, García-Plazaola JI. 2015. Versatility of carotenoids: an integrated view on diversity, evolution, functional roles and environmental interactions. Environmental and Experimental Botany 119:63−75

doi: 10.1016/j.envexpbot.2015.04.009
[40]

Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37:4302−15

doi: 10.1002/joc.5086
[41]

R Core Team. 2024. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

[42]

Jahns P, Holzwarth AR. 2012. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817:182−93

doi: 10.1016/j.bbabio.2011.04.012
[43]

Bag P, Chukhutsina V, Zhang Z, Paul S, Ivanov AG, et al. 2020. Direct energy transfer from photosystem II to photosystem I confers winter sustainability in Scots Pine. Nature Communications 11:6388

doi: 10.1038/s41467-020-20137-9
[44]

Formaggio E, Cinque G, Bassi R. 2001. Functional architecture of the major light-harvesting complex from higher plants. Journal of Molecular Biology 314:1157−66

doi: 10.1006/jmbi.2000.5179
[45]

Hörtensteiner S. 2013. Update on the biochemistry of chlorophyll breakdown. Plant Molecular Biology 82:505−17

doi: 10.1007/s11103-012-9940-z
[46]

Bethmann S, Melzer M, Schwarz N, Jahns P. 2019. The zeaxanthin epoxidase is degraded along with the D1 protein during photoinhibition of photosystem II. Plant Direct 3:e00185

doi: 10.1002/pld3.185
[47]

Ottander C, Öquist G. 1991. Recovery of photosynthesis in winter-stressed Scots pine. Plant, Cell & Environment 14:345−49

doi: 10.1111/j.1365-3040.1991.tb01511.x
[48]

Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698−702

doi: 10.1038/386698a0
[49]

Forkel M, Carvalhais N, Rödenbeck C, Keeling R, Heimann M, et al. 2016. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351:696−99

doi: 10.1126/science.aac4971
[50]

Verhoeven A, Osmolak A, Morales P, Crow J. 2009. Seasonal changes in abundance and phosphorylation status of photosynthetic proteins in eastern white pine and balsam fir. Tree Physiology 29:361−74

doi: 10.1093/treephys/tpn031
[51]

Merry R, Jerrard J, Frebault J, Verhoeven A. 2017. A comparison of pine and spruce in recovery from winter stress; changes in recovery kinetics, and the abundance and phosphorylation status of photosynthetic proteins during winter. Tree Physiology 37:1239−50

doi: 10.1093/treephys/tpx065
[52]

Ensminger I, Sveshnikov D, Campbell DA, Funk C, Jansson S, et al. 2004. Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Global Change Biology 10:995−1008

doi: 10.1111/j.1365-2486.2004.00781.x
[53]

Fréchette E, Wong CYS, Junker LV, Chang CY, Ensminger I. 2015. Zeaxanthin-independent energy quenching and alternative electron sinks cause a decoupling of the relationship between the photochemical reflectance index (PRI) and photosynthesis in an evergreen conifer during spring. Journal of Experimental Botany 66:7309−23

doi: 10.1093/jxb/erv427
[54]

Pierrat ZA, Magney T, Maguire A, Brissette L, Doughty R, et al. 2024. Seasonal timing of fluorescence and photosynthetic yields at needle and canopy scales in evergreen needleleaf forests. Ecology 105:e4402

doi: 10.1002/ecy.4402
[55]

Chen S, Kosugi Y, Jiao L, Sakabe A, Epron D, et al. 2025. Winter leaf reddening and photoprotection accessed by vegetation indices and its influence on canopy light-use efficiency of a Japanese cypress (Chamaecyparis obtusa) forest. Agricultural and Forest Meteorology 363:110427

doi: 10.1016/j.agrformet.2025.110427
[56]

Nagakura J, Shigenaga H, Akama A, Takahashi M. 2004. Growth and transpiration of Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) seedlings in response to soil water content. Tree Physiology 24:1203−8

doi: 10.1093/treephys/24.11.1203
[57]

Gamon JA, Wang R, Russo SE. 2023. Contrasting photoprotective responses of forest trees revealed using PRI light responses sampled with airborne imaging spectrometry. New Phytologist 238:1318−32

doi: 10.1111/nph.18754
[58]

Gamon JA, Huemmrich KF, Wong CYS, Ensminger I, Garrity S, et al. 2016. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proceedings of the National Academy of Sciences of the United States of America 113:13087−92

doi: 10.1073/pnas.1606162113