[1]

Baulcombe D. 2004. RNA silencing in plants. Nature 431:356−63

doi: 10.1038/nature02874
[2]

Zhao JH, Guo HS. 2022. RNA silencing: From discovery and elucidation to application and perspectives. Journal of Integrative Plant Biology 64:476−98

doi: 10.1111/jipb.13213
[3]

Baulcombe DC. 2022. The role of viruses in identifying and analyzing RNA silencing. Annual Review of Virology 9:353−73

doi: 10.1146/annurev-virology-091919-064218
[4]

Zhu KY, Palli SR. 2020. Mechanisms, Applications, and Challenges of Insect RNA Interference. Annual Review of Entomology 65:293−311

doi: 10.1146/annurev-ento-011019-025224
[5]

Fang X, Qi Y. 2016. RNAi in plants: an argonaute-centered view. The Plant Cell 28:272−85

doi: 10.1105/tpc.15.00920
[6]

Hung YH, Slotkin RK. 2021. The initiation of RNA interference (RNAi) in plants. Current Opinion in Plant Biology 61:102014

doi: 10.1016/j.pbi.2021.102014
[7]

Creasey KM, Zhai J, Borges F, Van Ex F, Regulski M, et al. 2014. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 508:411−15

doi: 10.1038/nature13069
[8]

Borges F, Parent JS, van Ex F, Wolff P, Martínez G, et al. 2018. Transposon-derived small RNAs triggered by miR845 mediate genome dosage response in Arabidopsis. Nature Genetics 50:186−92

doi: 10.1038/s41588-017-0032-5
[9]

Shimada A, Cahn J, Ernst E, Lynn J, Grimanelli D, et al. 2024. Retrotransposon addiction promotes centromere function via epigenetically activated small RNAs. Nature Plants 10:1304−16

doi: 10.1038/s41477-024-01773-1
[10]

Poethig RS, Peragine A, Yoshikawa M, Hunter C, Willmann M, et al. 2006. The function of RNAi in plant development. Cold Spring Harbor Symposia On Quantitative Biology 71:165−70

doi: 10.1101/sqb.2006.71.030
[11]

Jin Y, Zhao JH, Guo HS. 2021. Recent advances in understanding plant antiviral RNAi and viral suppressors of RNAi. Current Opinion in Virology 46:65−72

doi: 10.1016/j.coviro.2020.12.001
[12]

Liu S, Ding SW. 2024. Antiviral RNA interference inhibits virus vertical transmission in plants. Cell Host & Microbe 32:1691−1704.e4

doi: 10.1016/j.chom.2024.08.009
[13]

Ding SW. 2010. RNA-based antiviral immunity. Nature Reviews Immunology 10:632−44

doi: 10.1038/nri2824
[14]

Guo Z, Li Y, Ding SW. 2019. Small RNA-based antimicrobial immunity. Nature Reviews Immunology 19:31−44

doi: 10.1038/s41577-018-0071-x
[15]

Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H. 2007. A novel class of bacteria-induced small RNAs in Arabidopsis. Genes & Development 21:3123−34

[16]

Guo Z, Lu J, Wang X, Zhan B, Li W, et al. 2017. Lipid flippases promote antiviral silencing and the biogenesis of viral and host siRNAs in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 114:1377−82

doi: 10.1073/pnas.1614204114
[17]

Jin Y, Zhao P, Fang YY, Gao F, Guo HS, et al. 2018. Genome-wide profiling of sRNAs in the Verticillium dahliae-infected Arabidopsis roots. Mycology 9:155−65

doi: 10.1080/21501203.2018.1426062
[18]

LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, et al. 2012. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host & Microbe 12:187−99

doi: 10.1016/j.chom.2012.06.007
[19]

Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, et al. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118−23

doi: 10.1126/science.1239705
[20]

Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, et al. 2016. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nature Plants 2:16153

doi: 10.1038/nplants.2016.153
[21]

Shahid S, Kim G, Johnson NR, Wafula E, Wang F, et al. 2018. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553:82−85

doi: 10.1038/nature25027
[22]

Hou Y, Zhai Y, Feng L, Karimi HZ, Rutter BD, et al. 2019. A phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility. Cell Host Microbe 25:153−65

doi: 10.1016/j.chom.2018.11.007
[23]

Ren B, Wang X, Duan J and Ma J. 2019. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science 365:919−22

doi: 10.1126/science.aav8907
[24]

Betti F, Ladera-Carmona MJ, Weits DA, Ferri G, Iacopino S, et al. 2021. Exogenous miRNAs induce post-transcriptional gene silencing in plants. Nature Plants 7:1379−88

doi: 10.1038/s41477-021-01005-w
[25]

Huang CY, Wang H, Hu P, Hamby R, Jin H. 2019. Small RNAs - big players in plant-microbe interactions. Cell Host Microbe 26:173−82

doi: 10.1016/j.chom.2019.07.021
[26]

Zhao JH and Guo HS. 2019. Trans-kingdom RNA interactions drive the evolutionary arms race between hosts and pathogens. Current Opinion in Genetics & Development 59:62−69

doi: 10.1016/j.gde.2019.07.019
[27]

Cai Q, Qiao L, Wang M, He B, Lin FM, et al. 2018. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126−29

doi: 10.1126/science.aar4142
[28]

Huang Y, Li W, Liu T, Lin X, Xia Y, et al. 2025. Rice extracellular vesicles send defense proteins into fungus Rhizoctonia solani to reduce disease. Developmental Cell 60:1168−81

doi: 10.1016/j.devcel.2024.12.020
[29]

Huang G, Allen R, Davis EL, Baum TJ, Hussey RS. 2006. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proceedings of the National Academy of Sciences of the United States of America 103:14302−6

doi: 10.1073/pnas.0604698103
[30]

Price DRG and Gatehouse JA. 2008. RNAi-mediated crop protection against insects. Trends In Biotechnology 26:393−400

doi: 10.1016/j.tibtech.2008.04.004
[31]

Zhang T, Jin Y, Zhao JH, Gao F, Zhou BJ, et al. 2016. Host-induced gene silencing of the target gene in fungal cells confers effective resistance to the cotton wilt disease pathogen Verticillium dahliae. Molecular Plant 9:939−42

doi: 10.1016/j.molp.2016.02.008
[32]

Tian W, Zhang T, Zhao JH, Dong YM, Li YZ, et al. 2025. HIGS-mediated crop protection against cotton aphids. Plant Biotechnology Journal 23:692−94

doi: 10.1111/pbi.14529
[33]

Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, et al. 2016. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathogens 12:e1005901

doi: 10.1371/journal.ppat.1005901
[34]

Qiao L, Niño-Sánchez J, Hamby R, Capriotti L, Chen A, et al. 2023. Artificial nanovesicles for dsRNA delivery in spray-induced gene silencing for crop protection. Plant Biotechnology. Journal 21:854−65

doi: 10.1111/pbi.14001
[35]

Wen HG, Zhao JH, Zhang BS, Gao F, Wu XM, et al. 2023. Microbe-induced gene silencing boosts crop protection against soil-borne fungal pathogens. Nature Plants 9:1409−18

doi: 10.1038/s41477-023-01507-9
[36]

Chen T, Tian W, Shuai Q, Wen HG, Guo HS, et al. 2025. Microbe-induced gene silencing of fungal gene confers efficient resistance against Fusarium graminearum in maize. aBIOTECH

doi: 10.1007/s42994-025-00212-9
[37]

Wang Y, Gong Q, Wu Y, Huang F, Ismayil A, et al. 2021. A calmodulin-binding transcription factor links calcium signaling to antiviral RNAi defense in plants. Cell Host & Microbe 29:1393−406

doi: 10.1016/j.chom.2021.07.003
[38]

Qiao Y, Liu L, Xiong Q, Flores C, Wong J, et al. 2013. Oomycete pathogens encode RNA silencing suppressors. Nature Genetics 45:330−3

doi: 10.1038/ng.2525
[39]

Zhu C, Liu JH, Zhao JH, Liu T, Chen YY, et al. 2022. A fungal effector suppresses the nuclear export of AGO1-miRNA complex to promote infection in plants. Proceedings of the National Academy of Sciences of the United States of America 119:e2114583119

doi: 10.1073/pnas.2114583119
[40]

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, et al. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806−11

doi: 10.1038/35888
[41]

Timmons L, Fire A. 1998. Specific interference by ingested dsRNA. Nature 395:854

doi: 10.1038/27579
[42]

Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, et al. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology 25:1307−13

doi: 10.1038/nbt1352
[43]

Escobar MA, Civerolo EL, Summerfelt KR and Dandekar AM. 2001. RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America 98:13437−42

doi: 10.1073/pnas.241276898
[44]

Koch A, Kumar N, Weber L, Keller H, Imani J, et al. 2013. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species. Proceedings of the National Academy of Sciences of the United States of America 110:19324−29

doi: 10.1073/pnas.1306373110
[45]

Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, et al. 2010. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. The Plant Cell 22:3130−41

doi: 10.1105/tpc.110.077040
[46]

Mittelbrunn M, Sánchez-Madrid F. 2012. Intercellular communication: diverse structures for exchange of genetic information. Nature Reviews Molecular Cell Biology 13:328−35

doi: 10.1038/nrm3335
[47]

Wang S, Birch PRJ, Jin H. 2024. Extracellular vesicles: a new avenue for mRNA delivery. Trends in Plant Science 29:845−47

doi: 10.1016/j.tplants.2024.04.001
[48]

Ngou BPM, Ding P, Jones JDG. 2022. Thirty years of resistance: zig-zag through the plant immune system. The Plant Cell 34:1447−78

doi: 10.1093/plcell/koac041
[49]

Zhang BS, Li YC, Guo HS, Zhao JH. 2022. Verticillium dahliae secretes small RNA to target host MIR157d and retard plant floral transition during infection. Frontiers in Plant Science 13:847086

doi: 10.3389/fpls.2022.847086
[50]

Wang M, Weiberg A, Dellota E Jr, Yamane D, Jin H. 2017. Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi. RNA Biology 14:421−28

doi: 10.1080/15476286.2017.1291112
[51]

Wang B, Sun Y, Song N, Zhao M, Liu R, et al. 2017. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. New Phytologist 215:338−50

doi: 10.1111/nph.14577
[52]

He B, Wang H, Liu G, Chen A, Calvo A, et al. 2023. Fungal small RNAs ride in extracellular vesicles to enter plant cells through clathrin-mediated endocytosis. Nature Communications 14:4383

doi: 10.1038/s41467-023-40093-4
[53]

Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Mallory AC, et al. 1998. A viral suppressor of gene silencing in plants. Proceedings of the National Academy of Sciences of the United States Of America 95:13079−84

doi: 10.1073/pnas.95.22.13079
[54]

Li WX, Ding SW. 2001. Viral suppressors of RNA silencing. Current Opinion in Biotechnology 12:150−4

doi: 10.1016/S0958-1669(00)00190-7
[55]

Qiao Y, Shi J, Zhai Y, Hou Y, Ma W. 2015. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection. Proceedings of the National Academy of Sciences of the United States of America 112:5850−55

doi: 10.1073/pnas.142147511
[56]

Zhang P, Jia Y, Shi J, Chen C, Ye W, et al. 2019. The WY domain in the Phytophthora effector PSR1 is required for infection and RNA silencing suppression activity. New Phytologist 223:839−52

doi: 10.1111/nph.15836
[57]

Gui X, Zhang P, Wang D, Ding Z, Wu X, et al. 2022. Phytophthora effector PSR1 hijacks the host pre-mRNA splicing machinery to modulate small RNA biogenesis and plant immunity. The Plant Cell 34:3443−59

doi: 10.1093/plcell/koac176
[58]

He J, Ye W, Choi DS, Wu B, Zhai Y, et al. 2019. Structural analysis of Phytophthora suppressor of RNA silencing 2 (PSR2) reveals a conserved modular fold contributing to virulence. Proceedings of the National Academy of Sciences of the United States of America 116:8054−59

doi: 10.1073/pnas.1819481116
[59]

Wang Z, Gao X, Zhong S, Li Y, Shi M, et al. 2022. Host-induced gene silencing of PcCesA3 and PcOSBP1 confers resistance to Phytophthora capsici in Nicotiana benthamiana through NbDCL3 and NbDCL4 processed small interfering RNAs. International Journal of Biological Macromolecules 222:1665−75

doi: 10.1016/j.ijbiomac.2022.09.178
[60]

Mosquera S, Ginésy M, Bocos-Asenjo IT, Amin H, Diez-Hermano S, et al. 2025. Spray-induced gene silencing to control plant pathogenic fungi: a step-by-step guide. Journal of Integrative Plant Biology 67:801−25

doi: 10.1111/jipb.13848
[61]

Spada M, Pugliesi C, Fambrini M, Pecchia S. 2021. Silencing of the Slt2-Type MAP Kinase Bmp3 in Botrytis cinerea by application of exogenous dsRNA affects fungal growth and virulence on Lactuca sativa. International. Journal of Molecular Sciences 22:5362

doi: 10.3390/ijms22105362
[62]

Chen J, Peng Y, Zhang H, Wang K, Zhao C, et al. 2021. Off-target effects of RNAi correlate with the mismatch rate between dsRNA and non-target mRNA. RNA Biology 18:1747−59

doi: 10.1080/15476286.2020.1868680
[63]

Wang M, Weiberg A, Lin FM, Thomma BPHJ, Huang HD, et al. 2016. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nature Plants 2:16151

doi: 10.1038/nplants.2016.151
[64]

McLoughlin AG, Wytinck N, Walker PL, Girard IJ, Rashid KY, et al. 2018. Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea. Scientific Reports 8:7320

doi: 10.1038/s41598-018-25434-4
[65]

Qiao L, Lan C, Capriotti L, Ah-Fong A, Nino Sanchez J, et al. 2021. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnology Journal 19:1756−68

doi: 10.1111/pbi.13589
[66]

Zhang T, Zhao JH, Fang YY, Guo HS, Jin Y. 2022. Exploring the effectiveness and durability of trans-kingdom silencing of fungal genes in the vascular pathogen Verticillium dahliae. International Journal of Molecular Sciences 23:2742

doi: 10.3390/ijms23052742