[1]

Muhammad Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, et al. 2022. Mechanisms of abscisic acid-mediated drought stress responses in plants. International Journal of Molecular Sciences 23:1084

doi: 10.3390/ijms23031084
[2]

Pizzio GA. 2025. The role of abscisic acid (ABA) machinery in stress response. Plants 14:935

[3]

Chen G, Zheng D, Feng N, Zhou H, Mu D, et al. 2022. Physiological mechanisms of ABA-induced salinity tolerance in leaves and roots of rice. Scientific Reports 12:8228

doi: 10.1038/s41598-022-11408-0
[4]

Yu Z, Duan X, Luo L, Dai S, Ding Z, et al. 2020. How plant hormones mediate salt stress responses. Trends in Plant Science 25:1117−30

doi: 10.1016/j.tplants.2020.06.008
[5]

Wani SH, Kumar V. 2015. Plant stress tolerance: engineering ABA: a potent phytohormone. Transcriptomics 3:1000113

doi: 10.4172/2329-8936.1000113
[6]

Mo W, Zheng X, Shi Q, Zhao X, Chen X, et al. 2024. Unveiling the crucial roles of abscisic acid in plant physiology: implications for enhancing stress tolerance and productivity. Frontiers in Plant Science 15:1437184

doi: 10.3389/fpls.2024.1437184
[7]

Sahab S, Suhani I, Srivastava V, Chauhan PS, Singh RP, et al. 2021. Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Science of The Total Environment 764:144164

doi: 10.1016/j.scitotenv.2020.144164
[8]

Kopittke PM, Menzies NW, Wang P, McKenna BA, Lombi E. 2019. Soil and the intensification of agriculture for global food security. Environment International 132:105078

doi: 10.1016/j.envint.2019.105078
[9]

Reynolds MP, Ortiz-Monasterio JI, McNab A. 2001. Application of physiology in wheat breeding. Texcoco, Mexico: International Maize and Wheat Improvement Center (CIMMYT). https://repository.cimmyt.org/bitstream/10883/1248/1/74619.pdf

[10]

Ivushkin K, Bartholomeus H, Bregt AK, Pulatov A, Kempen B, et al. 2019. Global mapping of soil salinity change. Remote Sensing of Environment 231:111260

doi: 10.1016/j.rse.2019.111260
[11]

Food and Agriculture Organization (FAO). 2024. Global status of salt-affected soils. Report. Rome, Italy: FAO. pp. 1−211. www.fao.org/family-farming/detail/en/c/1730916/

[12]

Suhani I, Monika, Vaish B, Singh P, Singh RP. 2020. Restoration, construction, and conservation of degrading wetlands: a step toward sustainable management practices. In Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment, eds. Upadhyay A, Singh R, Singh D. Singapore: Springer. pp. 1−16. doi: 10.1007/978-981-13-7665-8_1

[13]

Machado RMA, Serralheiro RP. 2017. Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3:30

doi: 10.3390/horticulturae3020030
[14]

Gonzalez-Villagra J, Figueroa C, Luengo-Escobar A, Morales M, Inostroza-Blancheteau C, et al. 2021. Abscisic acid and plant response under adverse environmental conditions. In Plant Performance Under Environmental Stress: Hormones, Biostimulants and Sustainable Plant Growth Management, ed. Husen A. Cham, Switzerland: Springer International Publishing. pp. 17−47. doi: 10.1007/978-3-030-78521-5_2

[15]

Hemberg T. 1949. Growth-inhibiting substances in terminal buds of Fraxinus. Physiologia Plantarum 2:37−44

doi: 10.1111/j.1399-3054.1949.tb07646.x
[16]

Hemberg T. 1949. Significance of growth-inhibiting substances and auxins for the rest-period of the potato tuber. Physiologia Plantarum 2:24−36

doi: 10.1111/j.1399-3054.1949.tb07645.x
[17]

Eagles CF, Wareing PF. 1963. Experimental induction of dormancy in Betula pubescens. Nature 199:874−75

doi: 10.1038/199874a0
[18]

Dejonghe W, Okamoto M, Cutler SR. 2018. Small molecule probes of ABA biosynthesis and signaling. Plant & Cell Physiology 59:1490−99

doi: 10.1093/pcp/pcy126
[19]

Jiang Y, Jiang S, Liu L. 2025. Understanding the multifaceted role of ABA signaling in orchestrating plant developmental transition. Stress Biology 5:5

doi: 10.1007/s44154-024-00203-8
[20]

Singh A, Roychoudhury A. 2023. Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. Plant Cell Reports 42:961−74

doi: 10.1007/s00299-023-03013-w
[21]

Ren F, Zhang R, Chen Q, Bai Y, Huang F, et al. 2012. Progress in ABA and SA improving plant drought resistance and salt resistance. Biotechnology Bulletin 29:17−21 (in Chinese)

doi: 10.13560/j.cnki.biotech.bull.1985.2012.03.022
[22]

Wang X, Ma G, Feng N, Zheng D, Zhou H, et al. 2025. Abscisic acid can improve the salt tolerance and yield of rice by improving its physiological characteristics. Agronomy 15:309

doi: 10.3390/agronomy15020309
[23]

Sarkar B, Bandyopadhyay P, Das A, Pal S, Hasanuzzaman M, et al. 2023. Abscisic acid priming confers salt tolerance in maize seedlings by modulating osmotic adjustment, bond energies, ROS homeostasis, and organic acid metabolism. Plant Physiology and Biochemistry 202:107980

doi: 10.1016/j.plaphy.2023.107980
[24]

Cai S, Chen G, Wang Y, Huang Y, Marchant DB, et al. 2017. Evolutionary conservation of ABA signaling for stomatal closure. Plant Physiology 174:732−47

doi: 10.1104/pp.16.01848
[25]

Kamiyama Y, Katagiri S, Umezawa T. 2021. Growth promotion or osmotic stress response: how SNF1-related protein kinase 2 (SnRK2) kinases are activated and manage intracellular signaling in plants. Plants 10:1443

doi: 10.3390/plants10071443
[26]

Holsteens K, De Jaegere I, Wynants A, Prinsen ELJ, Van de Poel B. 2022. Mild and severe salt stress responses are age-dependently regulated by abscisic acid in tomato. Frontiers in Plant Science 13:982622

doi: 10.3389/fpls.2022.982622
[27]

Xiang Z, Zhang L, Long Y, Zhang M, Yao Y, et al. 2024. An ABA biosynthesis enzyme gene OsNCED4 regulates NaCl and cold stress tolerance in rice. Scientific Reports 14:26711

doi: 10.1038/s41598-024-78121-y
[28]

Truong HA, Lee S, Trịnh CS, Lee WJ, Chung E-H, et al. 2021. Overexpression of the HDA15 gene confers resistance to salt stress by the induction of NCED3, an ABA biosynthesis enzyme. Frontiers in Plant Science 12:640443

doi: 10.3389/fpls.2021.640443
[29]

Huang Y, Zhou J, Li Y, Quan R, Wang J, et al. 2021. Salt Stress promotes abscisic acid accumulation to affect cell proliferation and expansion of primary roots in rice. International Journal of Molecular Sciences 22:10892

doi: 10.3390/ijms221910892
[30]

Segarra-Medina C, Alseekh S, Fernie AR, Rambla JL, Pérez-Clemente RM, et al. 2023. Abscisic acid promotes plant acclimation to the combination of salinity and high light stress. Plant Physiology and Biochemistry 203:108008

doi: 10.1016/j.plaphy.2023.108008
[31]

Zahedi SM, Hosseini MS, Abadía J, Marjani M. 2020. Melatonin foliar sprays elicit salinity stress tolerance and enhance fruit yield and quality in strawberry (Fragaria× ananassa Duch.). Plant Physiology and Biochemistry 149:313−23

doi: 10.1016/j.plaphy.2020.02.021
[32]

Liu Z, Ma C, Hou L, Wu X, Wang D, et al. 2022. Exogenous SA affects rice seed germination under salt stress by regulating Na+/K+ balance and endogenous GAs and ABA homeostasis. International Journal of Molecular Sciences 23:3293

doi: 10.3390/ijms23063293
[33]

Li Y, Zhou J, Li Z, Qiao J, Quan R, et al. 2022. SALT AND ABA RESPONSE ERF1 improves seed germination and salt tolerance by repressing ABA signaling in rice. Plant Physiology 189:1110−27

doi: 10.1093/plphys/kiac125
[34]

Zörb C, Geilfus C-M, Mühling KH, Ludwig-Müller J. 2013. The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. Journal of Plant Physiology 170:220−24

doi: 10.1016/j.jplph.2012.09.012
[35]

Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, et al. 2008. Plant ABC proteins—a unified nomenclature and updated inventory. Trends in Plant Science 13:151−59

doi: 10.1016/j.tplants.2008.02.001
[36]

Zhang Y, Kilambi HV, Liu J, Bar H, Lazary S, et al. 2021. ABA homeostasis and long-distance translocation are redundantly regulated by ABCG ABA importers. Science Advances 7:eabf6069

doi: 10.1126/sciadv.abf6069
[37]

Ying W, Liao L, Wei H, Gao Y, Liu X, et al. 2023. Structural basis for abscisic acid efflux mediated by ABCG25 in Arabidopsis thaliana. Nature Plants 9:1697−708

doi: 10.1038/s41477-023-01510-0
[38]

Kuromori T, Fujita M, Urano K, Tanabata T, Sugimoto E, Shinozaki K. 2016. Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency. Plant Science 251:75−81

doi: 10.1016/j.plantsci.2016.02.019
[39]

Chen K, Li G-J, Bressan RA, Song C-P, Zhu J-K, et al. 2020. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology 62:25−54

doi: 10.1111/jipb.12899
[40]

Kang J, Yim S, Choi H, Kim A, Lee KP, et al. 2015. Abscisic acid transporters cooperate to control seed germination. Nature Communications 6:8113

doi: 10.1038/ncomms9113
[41]

Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, et al. 2010. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proceedings of the National Academy of Sciences of the United States of America 107:2361−66

doi: 10.1073/pnas.0912516107
[42]

Kuromori T, Sugimoto E, Shinozaki K. 2011. Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. The Plant Journal 67:885−94

doi: 10.1111/j.1365-313X.2011.04641.x
[43]

Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, et al. 2012. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proceedings of the National Academy of Sciences of the United States of America 109:9653−58

doi: 10.1073/pnas.1203567109
[44]

Zhang H, Zhu H, Pan Y, Yu Y, Luan S, et al. 2014. A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. Molecular Plant 7:1522−32

doi: 10.1093/mp/ssu063
[45]

Shohat H, Cheriker H, Cohen A, Weiss D. 2023. Tomato ABA-IMPORTING TRANSPORTER 1.1 inhibits seed germination under high salinity conditions. Plant Physiol 191:1404−15

doi: 10.1093/plphys/kiac545
[46]

Wang WR, Liang JH, Wang GF, Sun MX, Peng FT, et al. 2020. Overexpression of PpSnRK1α in tomato enhanced salt tolerance by regulating ABA signaling pathway and reactive oxygen metabolism. BMC Plant Biology 20:128

doi: 10.1186/s12870-020-02342-2
[47]

Wen D, Bao L, Huang X, Qian X, Chen E, et al. 2022. OsABT is involved in abscisic acid signaling pathway and salt tolerance of roots at the rice seedling stage. International Journal of Molecular Sciences 23:10656

doi: 10.3390/ijms231810656
[48]

Wang B, Luo Y, Zhong B, Xu H, Wang F, et al. 2025. The abscisic acid signaling negative regulator OsPP2C68 confers drought and salinity tolerance to rice. Scientific Reports 15:6730

doi: 10.1038/s41598-025-91226-2
[49]

Chen C, Zhang Z, Lei YY, Chen WJ, Zhang ZH, et al. 2024. MdMYB44-like positively regulates salt and drought tolerance via the MdPYL8-MdPP2CA module in apple. The Plant Journal 118:24−41

doi: 10.1111/tpj.16584
[50]

Liu Y, Ji X, Nie X, Qu M, Zheng L, et al. 2015. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytologist 207:692−709

doi: 10.1111/nph.13387
[51]

Zhang G, Ren N, Huang L, Shen T, Chen Y, et al. 2024. Basic helix-loop-helix transcription factor OsbHLH110 positively regulates abscisic acid biosynthesis and salinity tolerance in rice. Plant Physiology and Biochemistry 207:108423

doi: 10.1016/j.plaphy.2024.108423
[52]

Qiu JR, Huang Z, Xiang XY, Xu WX, Wang JT, et al. 2020. MfbHLH38, a Myrothamnus flabellifolia bHLH transcription factor, confers tolerance to drought and salinity stresses in Arabidopsis. BMC Plant Biology 20:542

doi: 10.1186/s12870-020-02732-6
[53]

Hong Y, Zhang H, Huang L, Li D, Song F. 2016. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Frontiers in Plant Science 7:4

doi: 10.3389/fpls.2016.00004
[54]

Huang S, Hu L, Zhang S, Zhang M, Jiang W, et al. 2021. Rice OsWRKY50 mediates ABA-dependent seed germination and seedling growth, and ABA-independent salt stress tolerance. International Journal of Molecular Sciences 22:8625

doi: 10.3390/ijms22168625
[55]

Du F, Wang Y, Wang J, Li Y, Zhang Y, et al. 2023. The basic helix-loop-helix transcription factor gene, OsbHLH38, plays a key role in controlling rice salt tolerance. Journal of Integrative Plant Biology 65:1859−73

doi: 10.1111/jipb.13489
[56]

Liu D, Chen X, Liu J, Ye J, Guo Z. 2012. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. Journal of Experimental Botany 63:3899−911

doi: 10.1093/jxb/ers079
[57]

Zhang Q, Liu Y, Jiang Y, Li A, Cheng B, et al. 2022. OsASR6 enhances salt stress tolerance in rice. International Journal of Molecular Sciences 23:9340

doi: 10.3390/ijms23169340
[58]

Liu Y, Sun J, Wu Y. 2016. Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice. Journal of Plant Research 129:955−62

doi: 10.1007/s10265-016-0833-0
[59]

Joo J, Lee YH, Song SI. 2019. OsbZIP42 is a positive regulator of ABA signaling and confers drought tolerance to rice. Planta 249:1521−33

doi: 10.1007/s00425-019-03104-7
[60]

Zhang X, Long Y, Chen X, Zhang B, Xin Y, et al. 2021. A NAC transcription factor OsNAC3 positively regulates ABA response and salt tolerance in rice. BMC Plant Biology 21:546

doi: 10.1186/s12870-021-03333-7
[61]

Hossain MA, Cho JI, Han M, Ahn CH, Jeon JS, et al. 2010. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. Journal of Plant Physiology 167:1512−20

doi: 10.1016/j.jplph.2010.05.008
[62]

Xiang Y, Tang N, Du H, Ye H, Xiong L. 2008. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology 148:1938−52

doi: 10.1104/pp.108.128199
[63]

Bhuria M, Goel P, Kumar S, Singh AK. 2022. AtUSP17 negatively regulates salt stress tolerance through modulation of multiple signaling pathways in Arabidopsis. Physiologia Plantarum 174:e13635

doi: 10.1111/ppl.13635
[64]

Shi XP, Ren JJ, Yu Q, Zhou SM, Ren QP, et al. 2018. Overexpression of SDH confers tolerance to salt and osmotic stress, but decreases ABA sensitivity in Arabidopsis. Plant Biology 20:327−37

doi: 10.1111/plb.12664
[65]

Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, et al. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of the National Academy of Sciences of the United States of America 97:11632−37

doi: 10.1073/pnas.190309197
[66]

Sun L, Li Y, Miao W, Piao T, Hao Y, et al. 2017. NADK2 positively modulates abscisic acid-induced stomatal closure by affecting accumulation of H2O2, Ca2+ and nitric oxide in Arabidopsis guard cells. Plant Science 262:81−90

doi: 10.1016/j.plantsci.2017.06.003
[67]

Yang W, Liu XD, Chi XJ, Wu CA, Li YZ, et al. 2011. Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233:219−29

doi: 10.1007/s00425-010-1279-6
[68]

Zhang S, Yang R, Huo Y, Liu S, Yang G, et al. 2018. Expression of cotton PLATZ1 in transgenic Arabidopsis reduces sensitivity to osmotic and salt stress for germination and seedling establishment associated with modification of the abscisic acid, gibberellin, and ethylene signalling pathways. BMC Plant Biology 18:218

doi: 10.1186/s12870-018-1416-0
[69]

Ullah A, Sun H, Hakim, Yang X, Zhang X. 2018. A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species. Physiologia Plantarum 162:439−54

doi: 10.1111/ppl.12651
[70]

Yan H, Jia H, Chen X, Hao L, An H, et al. 2014. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant & Cell Physiology 55:2060−76

doi: 10.1093/pcp/pcu133
[71]

Wang X, Huo Z, Ma L, Ou S, Guo M. 2025. The salt and ABA inducible transcription factor gene, SlAITR3, negatively regulates tomato salt tolerance. Plant Physiology and Biochemistry 222:109735

doi: 10.1016/j.plaphy.2025.109735
[72]

Waseem M, Rong X, Li Z. 2019. Dissecting the Role of a Basic Helix-Loop-Helix Transcription Factor, SlbHLH22, under salt and drought stresses in transgenic Solanum lycopersicum L. Frontiers in Plant Science 10:734

doi: 10.3389/fpls.2019.00734
[73]

Wang F, Zhu H, Chen D, Li Z, Peng R, et al. 2016. A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture (PCTOC) 125:387−98

doi: 10.1007/s11240-016-0953-1
[74]

Li C, Lv J, Zhao X, Ai X, Zhu X, et al. 2010. TaCHP: a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance. Plant Physiology 154:211−21

doi: 10.1104/pp.110.161182
[75]

Yang H, Zhang Y, Liu Y, Jian S, Deng S. 2023. A novel ABA-induced transcript factor from Millettia pinnata, MpAITR1, enhances salt and drought tolerance through ABA signaling in transgenic Arabidopsis. Journal of Plant Physiology 288:154060

doi: 10.1016/j.jplph.2023.154060