[1]

Sparks AN. 1979. A review of the biology of the fall armyworm. The Florida Entomologist 62:82−87

doi: 10.2307/3494083
[2]

Eschen R, Beale T, Bonnin JM, Constantine KL, Duah S, et al. 2021. Towards estimating the economic cost of invasive alien species to African crop and livestock production. CABI Agriculture and Bioscience 2:1

doi: 10.1186/s43170-020-00021-8
[3]

Sun Z, Fu P, Chen Y, Lu Z, Wan F, et al. 2025. Population genomics of migratory and resident Spodoptera frugiperda reveals key genes and loci driving migration traits. Pest Management Science 81:3112−21

doi: 10.1002/ps.8682
[4]

Wang H, Song J, Hunt BJ, Zuo K, Zhou H, et al. 2024. UDP-glycosyltransferases act as key determinants of host plant range in generalist and specialist Spodoptera species. Proceedings of the National Academy of Sciences of the United States of America 121:e2402045121

doi: 10.1073/pnas.2402045121
[5]

Gimenez S, Abdelgaffar H, Le Goff G, Hilliou F, Blanco CA, et al. 2020. Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Communications Biology 3:664

doi: 10.1038/s42003-020-01382-6
[6]

Fu P, Li X, Sun Z, Chen Y, Lu Z, et al. 2025. Population genetics and trajectory simulation reveals the invasion process of the fall armyworm (Spodoptera frugiperda) in the eastern hemisphere. Evolutionary Applications 18:e70086

doi: 10.1111/eva.70086
[7]

Durand K, Yainna S, Nam K. 2024. Population genomics unravels a lag phase during the global fall armyworm invasion. Communications Biology 7:957

doi: 10.1038/s42003-024-06634-3
[8]

Huang YX, Rao HY, Su BS, Lv JM, Lin JJ, et al. 2025. The pan-genome of Spodoptera frugiperda provides new insights into genome evolution and horizontal gene transfer. Communications Biology 8:407

doi: 10.1038/s42003-025-07707-7
[9]

Yainna S, Hilliou F, Haenniger S, d'Alençon E, Brévault T, et al. 2024. Adaptive evolution of invasive fall armyworms to maize with potential involvement of Cytochrome P450 genes. BMC Genomics 25:949

doi: 10.1186/s12864-024-10845-7
[10]

Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, et al. 2018. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology 26:286−300

doi: 10.4001/003.026.0286
[11]

Pashley DP. 1986. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex? Annals of the Entomological Society of America 79:898−904

doi: 10.1093/aesa/79.6.898
[12]

Pashley DP, Hammond AM, Hardy TN. 1992. Reproductive isolating mechanisms in fall armyworm host strains (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 85:400−5

doi: 10.1093/aesa/85.4.400
[13]

Dumas P, Legeai F, Lemaitre C, Scaon E, Orsucci M, et al. 2015. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species? Genetica 143:305−16

doi: 10.1007/s10709-015-9829-2
[14]

Luginbill P. 1928. The fall army worm. Technical Bulletin No. 34. U.S. Department of Agriculture, Washington, DC, USA. https://books.google.nl/books?hl=en&lr=&id=at28aPRXHKsC&oi=fnd&pg=PA2&dq=The+Fall+Army+Worm&ots=X5POqxkHjI&sig=ZAdY7Nje1OmGu8p0w7ub2s_4nOs&redir_esc=y#v=onepage&q=The%20Fall%20Army%20Worm&f=false

[15]

Fiteni E, Durand K, Gimenez S, Meagher RL Jr, Legeai F, et al. 2022. Host-plant adaptation as a driver of incipient speciation in the fall armyworm (Spodoptera frugiperda). BMC Ecology and Evolution 22:133

doi: 10.1186/s12862-022-02090-x
[16]

Gui F, Lan T, Zhao Y, Guo W, Dong Y, et al. 2022. Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein & Cell 13:513−31

doi: 10.1007/s13238-020-00795-7
[17]

Nagoshi RN, Silvie P, Meagher RL, Lopez J, Machado V. 2007. Identification and comparison of fall armyworm (Lepidoptera: Noctuidae) host strains in Brazil, Texas, and Florida. Annals of the Entomological Society of America 100:394−402

doi: 10.1603/0013-8746(2007)100[394:IACOFA]2.0.CO;2
[18]

Nagoshi RN. 2012. Improvements in the identification of strains facilitate population studies of fall armyworm subgroups. Annals of the Entomological Society of America 105:351−58

doi: 10.1603/AN11138
[19]

Nagoshi RN, Fleischer S, Meagher RL, Hay-Roe M, Khan A, et al. 2017. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations. PLoS One 12:e0171743

doi: 10.1371/journal.pone.0171743
[20]

Nagoshi RN. 2022. Observations of genetic differentiation between the fall armyworm host strains. PLoS One 17:e0277510

doi: 10.1371/journal.pone.0277510
[21]

Murúa MG, Nagoshi RN, dos Santos DA, Hay-Roe MM, Meagher RL, et al. 2015. Demonstration using field collections that Argentina fall armyworm populations exhibit strain-specific host plant preferences. Journal of Economic Entomology 108:2305−15

doi: 10.1093/jee/tov203
[22]

Nagoshi RN. 2010. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Annals of the Entomological Society of America 103:283−92

doi: 10.1603/AN09046
[23]

Prowell DP, McMichael M, Silvain JF. 2004. Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 97:1034−44

doi: 10.1603/0013-8746(2004)097[1034:MGAOHU]2.0.CO;2
[24]

Nagoshi RN, Goergen G, Koffi D, Agboka K, Adjevi AKM, et al. 2022. Genetic studies of fall armyworm indicate a new introduction into Africa and identify limits to its migratory behavior. Scientific Reports 12:1941

doi: 10.1038/s41598-022-05781-z
[25]

Zhang L, Liu B, Jiang Y, Liu J, Wu K, et al. 2019. Molecular characterization analysis of fall armyworm population in China. Plant Protection 45:20−27

[26]

Jacobs A, van Vuuren A, Rong IH. 2018. Characterisation of the fall armyworm (Spodoptera frugiperda J.E. Smith) (Lepidoptera: Noctuidae) from South Africa. African Entomology 26:45−49

doi: 10.4001/003.026.0045
[27]

Zhang L, Liu B, Zheng W, Liu C, Zhang D, et al. 2020. Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Molecular Ecology Resources 20:1682−96

doi: 10.1111/1755-0998.13219
[28]

Jing DP, Guo JF, Jiang YY, Zhao JZ, Sethi A, et al. 2020. Initial detections and spread of invasive Spodoptera frugiperda in China and comparisons with other noctuid larvae in cornfields using molecular techniques. Insect Science 27:780−90

doi: 10.1111/1744-7917.12700
[29]

Nagoshi RN, Goergen G, Plessis HD, van den Berg J, Meagher R. 2019. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Scientific Reports 9:8311

doi: 10.1038/s41598-019-44744-9
[30]

Liang XY, Zhang L, Li HR, Niu XP, Xiao YT. 2024. Genetic variation in the triosephosphate isomerase gene of the fall armyworm and its distribution across China. Insect Science 31:1984−97

doi: 10.1111/1744-7917.13348
[31]

Xiao H, Ye X, Xu H, Mei Y, Yang Y, et al. 2020. The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion. Molecular Ecology Resources 20:1050−68

doi: 10.1111/1755-0998.13182
[32]

Zhang L, Li Z, Peng Y, Liang X, Wilson K, et al. 2023. Global genomic signature reveals the evolution of fall armyworm in the Eastern hemisphere. Molecular Ecology 32:5463−78

doi: 10.1111/mec.17117
[33]

Schlum KA, Lamour K, de Bortoli CP, Banerjee R, Meagher R, et al. 2021. Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations. BMC Genomics 22:179

doi: 10.1186/s12864-021-07492-7
[34]

Durand K, An H, Nam K. 2024. Invasive fall armyworms are corn strain. Scientific Reports 14:5696

doi: 10.1038/s41598-024-56301-0
[35]

Wang X, Du Z, Duan Y, Liu S, Liu J, et al. 2024. Population genomics analyses reveal the role of hybridization in the rapid invasion of fall armyworm. Journal of Advanced Research In Press

doi: 10.1016/j.jare.2024.09.028
[36]

Cock MJW, Beseh PK, Buddie AG, Cafá G, Crozier J. 2017. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Scientific Reports 7:4103

doi: 10.1038/s41598-017-04238-y
[37]

Tabashnik BE, Fabrick JA, Carrière Y. 2023. Global patterns of insect resistance to transgenic Bt Crops: The first 25 years. Journal of Economic Entomology 116:297−309

doi: 10.1093/jee/toac183
[38]

Tay WT, Rane RV, Padovan A, Walsh TK, Elfekih S, et al. 2022. Global population genomic signature of Spodoptera frugiperda (fall armyworm) supports complex introduction events across the Old World. Communications Biology 5:297

doi: 10.1038/s42003-022-03230-1
[39]

Rane R, Walsh TK, Lenancker P, Gock A, Dao TH, et al. 2023. Complex multiple introductions drive fall armyworm invasions into Asia and Australia. Scientific Reports 13:660

doi: 10.1038/s41598-023-27501-x
[40]

Tay WT, Meagher RL Jr, Czepak C, Groot AT. 2023. Spodoptera frugiperda: ecology, evolution, and management options of an invasive species. Annual Review of Entomology 68:299−317

doi: 10.1146/annurev-ento-120220-102548
[41]

Chen H, Wan G, Li J, Ma Y, Reynolds DR, et al. 2023. Adaptive migratory orientation of an invasive pest on a new continent. iScience 26:108281

doi: 10.1016/j.isci.2023.108281
[42]

Huang LL, Xue FS, Chen C, Guo X, Tang JJ, et al. 2021. Effects of temperature on life-history traits of the newly invasive fall armyworm, Spodoptera frugiperda in Southeast China. Ecology and Evolution 11:5255−64

doi: 10.1002/ece3.7413
[43]

Wu K. 2020. Management strategies of fall armyworm (Spodoptera fiugiperda) in China. Plant Protection 46:1−5

doi: 10.16688/j.zwbh.2020088
[44]

Hafeez M, Li X, Ullah F, Zhang Z, Zhang J, et al. 2021. Behavioral and physiological plasticity provides insights into molecular based adaptation mechanism to strain shift in Spodoptera frugiperda. International Journal of Molecular Sciences 22:10284

doi: 10.3390/ijms221910284
[45]

Su X, Li C, Xu Y, Huang S, Liu W, et al. 2022. Feeding preference and adaptability of fall armyworm Spodoptera frugiperda on five species of host plants and six weeds. Journal of Environmental Entomology 44:263−72

doi: 10.3969/j.issn.1674-0858.2022.02.1
[46]

Guan F, Zhang J, Shen H, Wang X, Padovan A, et al. 2021. Whole-genome sequencing to detect mutations associated with resistance to insecticides and Bt proteins in Spodoptera frugiperda. Insect Science 28:627−38

doi: 10.1111/1744-7917.12838
[47]

Liu Z, Liao C, Zou L, Jin M, Shan Y, et al. 2024. Retrotransposon-mediated disruption of a chitin synthase gene confers insect resistance to Bacillus thuringiensis Vip3Aa toxin. PLoS Biology 22:e3002704

doi: 10.1371/journal.pbio.3002704
[48]

Jin M, Shan Y, Peng Y, Wang W, Zhang H, et al. 2023. Downregulation of a transcription factor associated with resistance to Bt toxin Vip3Aa in the invasive fall armyworm. Proceedings of the National Academy of Sciences of the United States of America 120:e2306932120

doi: 10.1073/pnas.2306932120
[49]

Piggott MP, Tadle FPJ, Patel S, Cardenas Gomez K, Thistleton B. 2021. Corn-strain or rice-strain? Detection of fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in northern Australia. International Journal of Tropical Insect Science 41:2607−15

doi: 10.1007/s42690-021-00441-7
[50]

Li H, Liang X, Peng Y, Liu Z, Zhang L, et al. 2024. Novel mito-nuclear combinations facilitate the global invasion of a major agricultural crop pest. Advanced Science 11:e2305353

doi: 10.1002/advs.202305353