[1]

Baibuch SY, Schelegueda LI, Bonifazi E, Cabrera G, Mondragón Portocarrero AC, et al. 2024. Argentinian rose petals as a source of antioxidant and antimicrobial compounds. Foods 13:977

doi: 10.3390/foods13070977
[2]

Huang Y, Xu T, Yuan Y, Xiang L, Wu T, et al. 2024. Identification of effective components in Flos Chrysanthemi Indici for alleviating gouty inflammation through integrated absorption and metabolism studies. Food Bioscience 61:104616

doi: 10.1016/j.fbio.2024.104616
[3]

Tan K, Lu T, Ren MX. 2020. Biogeography and evolution of Asian Gesneriaceae based on updated taxonomy. PhytoKeys 157:7−26

doi: 10.3897/phytokeys.157.34032
[4]

Xu W, Guo J, Pan B, Zhang Q, Liu Y. 2017. Diversity and distribution of Gesneriaceae in China. Guihaia 37:1219−26

[5]

Pharmacopoeia Commission of the People's Republic of China (eds). 2020. Pharmacopoeia of the People's Republic of China. Beijing: China Medical Science Press. Volume 1. 141 pp

[6]

Van Asdall W. 1983. A new medicinal plant from Amazonian Ecuador. Journal of Ethnopharmacology 9:315−17

doi: 10.1016/0378-8741(83)90038-7
[7]

Otero R, Fonnegra R, Jiménez SL, Núñez V, Evans N, et al. 2000. Snakebites and ethnobotany in the northwest region of Colombia: part I: traditional use of plants. Journal of Ethnopharmacology 71:493−504

doi: 10.1016/S0378-8741(00)00243-9
[8]

Tene V, Malagón O, Finzi PV, Vidari G, Armijos C, et al. 2007. An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. Journal of Ethnopharmacology 111:63−81

doi: 10.1016/j.jep.2006.10.032
[9]

Gutiérrez-Rebolledo GA, Garduño-Siciliano L, Chávez-Rueda AK, Siordia-Reyes AG, Zamilpa A, et al. 2018. In vivo anti-arthritic and antioxidant effects from the standardized ethanolic extract of Moussonia deppeana. Revista Brasileira de Farmacognosia 28:198−206

doi: 10.1016/j.bjp.2018.02.004
[10]

Valoyes DC, Palacios Palacios L. 2020. Patrones de uso de las plantas medicinales en el Chocó y Cauca (Colombia). Ciencia En Desarrollo 11:85−96

doi: 10.19053/01217488.v11.n2.2020.10583
[11]

Yan HX, Tao DY, Guan SK, Zhou JY, Song Q, et al. 2020. Statistical analysis of the international registration of Primulina varieties. Hunan Agricultural Sciences 50:110−13

doi: 10.16498/j.cnki.hnnykx.2020.004.028
[12]

Li B, Bai M, Luo L, Zhang Q. 2023. Oriental 'Violet'-Primulina. China Flowers & Horticulture 23:26−31

[13]

Zhang Y, Zhang J, Zou S, Liu Z, Huang H, et al. 2023. Genome-wide analysis of the cellulose toolbox of Primulina eburnea, a calcium-rich vegetable. BMC Plant Biology 23:259

doi: 10.1186/s12870-023-04266-z
[14]

Li SM, Yang XW, Shen YH, Feng L, Wang YH, et al. 2008. Chemical constituents of Aeschynanthus bracteatus and their weak anti-inflammatory activities. Phytochemistry 69:2200−4

doi: 10.1016/j.phytochem.2008.05.012
[15]

Yang LY, Yi P, Chen JL, Li YH, Qiu JL, et al. 2023. Chemical constituents of Primulina eburnea (Gesneriaceae) and their cytotoxic activities. Chemistry & Biodiversity 20:e202300248

doi: 10.1002/cbdv.202300248
[16]

Sales KA, da Silva EF, de Figueiredo PTR, de O. Costa VC, Scotti MT, et al. 2018. Chemical constituents from Paliavana tenuiflora Mansf. (Gesneriaceae). Biochemical Systematics and Ecology 80:76−80

doi: 10.1016/j.bse.2018.07.002
[17]

Wang X, Li L, Bai Z, Peng Y, Xiao P, et al. 2011. Five new phenylpropanoid glycosides from Paraboea glutinosa (Gesneriaceae). Journal of Nature Medicines 65:301−6

doi: 10.1007/s11418-010-0493-7
[18]

Mnari AB, Harzallah A, Amri Z, Aguir SD, Hammami M, et al. 2016. Phytochemical content, antioxidant properties, and phenolic profile of Tunisian raisin varieties (Vitis vinifera L.). International Journal of Food Properties 19:578−90

doi: 10.1080/10942912.2015.1038720
[19]

Meyers KJ, Watkins CB, Pritts MP, Liu RH. 2003. Antioxidant and antiproliferative activities of strawberries. Journal of Agricultural and Food Chemistry 51:6887−92

doi: 10.1021/jf034506n
[20]

Jia A, Yang YF, Kong DY. 2012. Isolation and structural identification of C-glycosylflavones from Callicarpa kwangtungensis Chun. and their preliminary anti-inflammatory activities. Chinese Journal of Pharmaceuticals 43:263−67

[21]

Köse LP, Gülçin İ, Gören AC, Namiesnik J, Martinez-Ayala AL, et al. 2015. LC-MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Industrial Crops and Products 74:712−21

doi: 10.1016/j.indcrop.2015.05.034
[22]

Dziurka M, Kubica P, Kwiecień I, Biesaga-Kościelniak J, Ekiert H, et al. 2021. In vitro cultures of some medicinal plant species (Cistus × incanus, Verbena officinalis, Scutellaria lateriflora, and Scutellaria baicalensis) as a rich potential source of antioxidants-evaluation by CUPRAC and QUENCHER-CUPRAC assays. Plants 10:454

doi: 10.3390/plants10030454
[23]

Villaño D, Lettieri-Barbato D, Guadagni F, Schmid M, Serafini M. 2012. Effect of acute consumption of oolong tea on antioxidant parameters in healthy individuals. Food Chemistry 132:2102−6

doi: 10.1016/j.foodchem.2011.12.064
[24]

Tian P, Wang J, Kang W. 2011. Chemical constituents of Aeschynanthus superbus Clarke. Chinese Pharmaceutical Journal 46:1795−97

[25]

Chen L. 2010. Studies on biological activity of four Gesneriaceae plants. Thesis. Henan University, China. pp. 17−19

[26]

Martakos I, Katsianou P, Koulis G, Efstratiou E, Nastou E, et al. 2021. Development of analytical strategies for the determination of olive fruit bioactive compounds using UPLC-HRMS and HPLC-DAD. Chemical characterization of Kolovi Lesvos variety as a case study. Molecules 26:7182

doi: 10.3390/molecules26237182
[27]

Chen W, Wen Y, Chen Y, Huang Y, Li D. 2010. Phenylethanoid glycosides and their cytotoxicity of Chirita eburnea Hance. Chinese Traditional Patent Medicine 32:1000−3

doi: 10.3969/j.issn.1001-1528.2010.06.033
[28]

Shen N, Wang T, Gan Q, Liu S, Wang L, et al. 2022. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry 383:132531

doi: 10.1016/j.foodchem.2022.132531
[29]

Durazzo A, Lucarini M, Souto EB, Cicala C, Caiazzo E, et al. 2019. Polyphenols: a concise overview on the chemistry, occurrence, and human health. Phytotherapy Research 33:2221−43

doi: 10.1002/ptr.6419
[30]

Foo LY. 1987. Phenylpropanoid derivatives of catechin, epicatechin and phylloflavan from Phyllocladus trichomanoides. Phytochemistry 26:2825−30

doi: 10.1016/S0031-9422(00)83598-0
[31]

Ahammed GJ, Wu Y, Wang Y, Guo T, Shamsy R, et al. 2023. Epigallocatechin-3-gallate (EGCG): a unique secondary metabolite with diverse roles in plant-environment interaction. Environmental and Experimental Botany 209:105299

doi: 10.1016/j.envexpbot.2023.105299
[32]

Gao H, Cui Y, Kang N, Liu X, Liu Y, et al. 2017. Isoacteoside, a dihydroxyphenylethyl glycoside, exhibits anti-inflammatory effects through blocking toll-like receptor 4 dimerization. British Journal of Pharmacology 174:2880−96

doi: 10.1111/bph.13912
[33]

Zou B, Li T, Xu Y, Yu Y, Wu J. 2022. Structural identification and antioxidant potency evaluation of pomelo vinegar polyphenols. Food Bioscience 47:101674

doi: 10.1016/j.fbio.2022.101674
[34]

Mulani SK, Guh JH, Mong KT. 2014. A general synthetic strategy and the anti-proliferation properties on prostate cancer cell lines for natural phenylethanoid glycosides. Organic & Biomolecular Chemistry 12:2926−37

doi: 10.1039/C3OB42503G
[35]

Li M, Xu T, Zhou F, Wang M, Song H, et al. 2018. Neuroprotective effects of four phenylethanoid glycosides on H2O2-induced apoptosis on PC12 cells via the Nrf2/ARE pathway. International Journal of Molecular Sciences 19:1135

doi: 10.3390/ijms19041135
[36]

Guo Y, Cui Q, Ren S, Hao D, Morikawa T, et al. 2021. The hepatoprotective efficacy and biological mechanisms of three phenylethanoid glycosides from cistanches herba and their metabolites based on intestinal bacteria and network pharmacology. Journal of Natural Medicines 75:784−97

doi: 10.1007/s11418-021-01508-y
[37]

Wang N, Hu C, Xiao P, Liu Y, Bai Z. 2023. Investigation on traditional pharmacology of domestic Gesneriaceae plants. Journal of Chinese Medicinal Materials 46:2975−79

[38]

Rai A, Kumari K, Han SS. 2023. Polyphenolic profiling of Victoria amazonica using MRM LC-MS/MS: a comparative analysis of various plant parts. Scientia Horticulturae 320:112206

doi: 10.1016/j.scienta.2023.112206
[39]

Yu R, Li Y, Si D, Yan S, Liu J, et al. 2023. Identification, quantitative and bioactivity analyses of aroma and alcohol-soluble components in flowers of Gardenia jasminoides and its variety during different drying processes. Food Chemistry 420:135846

doi: 10.1016/j.foodchem.2023.135846
[40]

Liu L, Yuan Y, Tao J. 2022. Antioxidant and antibacterial activities of 13 ornamental herbaceous peony cultivars: a comparative study with stems and leaves. New Zealand Journal of Crop and Horticultural Science 50:326−40

doi: 10.1080/01140671.2021.1938144
[41]

Bai Z, Wang X, Xiao P, Liu Y. 2013. Phenylethanoid glycosides distribution in medicinal plants of Gesneriaceae. China Journal of Chinese Materia Medica 38:4267−70

[42]

Rajčević N, Bukvički D, Dodoš T, Marin PD. 2022. Interactions between natural products—a review. Metabolites 12:1256

doi: 10.3390/metabo12121256
[43]

Xiao L, Ding J, Zhang J, Huang W, Siemann E. 2020. Chemical responses of an invasive plant to herbivory and abiotic environments reveal a novel invasion mechanism. Science of The Total Environment 741:140452

doi: 10.1016/j.scitotenv.2020.140452
[44]

Švestková P, Balík J, Soural I. 2024. Synergistic effect of selected carboxylic acids and phenolic compounds detected by the FRAP method. Food Chemistry: X 23:101573

doi: 10.1016/j.fochx.2024.101573
[45]

Redondo A, Estrella N, Lorenzo AG, Cruzado M, Castro C. 2012. Quercetin and catechin synergistically inhibit angiotensin II-induced redox-dependent signalling pathways in vascular smooth muscle cells from hypertensive rats. Free Radical Research 46:619−27

doi: 10.3109/10715762.2012.660527
[46]

Zhang M, Choe J, Bu T, Liu S, Kim S. 2023. Comparison of antioxidant properties and metabolite profiling of Acer pseudoplatanus leaves of different colors. Antioxidants 12:65

doi: 10.3390/antiox12010065
[47]

Wang F, Li Z, Wu Q, Guo Y, Wang J, et al. 2024. Floral response to heat: a study of color and biochemical adaptations in purple chrysanthemums. Plants 13:1865

doi: 10.3390/plants13131865
[48]

Salami M, Heidari B, Tan H. 2023. Comparative profiling of polyphenols and antioxidants and analysis of antiglycation activities in rapeseed (Brassica napus L.) under different moisture regimes. Food Chemistry 399:133946

doi: 10.1016/j.foodchem.2022.133946
[49]

Witkowska-Banaszczak E, Radzikowska D, Ratajczak K. 2018. Chemical profile and antioxidant activity of Trollius europaeus under the influence of feeding aphids. Open Life Sciences 13:312−18

doi: 10.1515/biol-2018-0038
[50]

Maleva M, Borisova G, Filimonova E, Lukina N, Chukina N, et al. 2022. Adaptive redox reactions promote naturalization of rare orchid Epipactis atrorubens on serpentine dumps post asbestos mining. Horticulturae 8:603

doi: 10.3390/horticulturae8070603
[51]

Li J, Dai M, Mou Y, Du C, Wang J, et al. 2024. Chemical composition, in vitro antioxidant, and skin-protective activities of Paeonia delavayi Franch stamen extract. Food and Fermentation Industries 50:186−97

doi: 10.13995/j.cnki.11-1802/ts.037326
[52]

Liu Y, Wu KX, Abozeid A, Guo XR, Mu LQ, et al. 2024. Transcriptomic and metabolomic insights into drought response strategies of two Astragalus species. Industrial Crops and Products 214:118509

doi: 10.1016/j.indcrop.2024.118509
[53]

Vasileva B, Krasteva N, Hristova-Panusheva K, Ivanov P, Miloshev G, et al. 2024. Exploring the biosafety potential of Haberlea rhodopensis Friv. In vitro culture total ethanol extract: a comprehensive assessment of genotoxicity, mitotoxicity, and cytotoxicity for therapeutic applications. Cells 13:1118

doi: 10.3390/cells13131118
[54]

Alqudah A, Qnais EY, Wedyan MA, AlKhateeb H, Abdalla SS, et al. 2023. Lysionotin exerts antinociceptive effects in various models of nociception induction. Heliyon 9:e15619

doi: 10.1016/j.heliyon.2023.e15619
[55]

Zhang Y, Yang E, Liu Q, Zhang J, Feng C. 2024. Combined full-length transcriptomic and metabolomic analysis reveals the molecular mechanisms underlying nutrients and taste components development in Primulina juliae. BMC Genomic Data 25:46

doi: 10.1186/s12863-024-01231-z