[1]

Compant S, Clément C, Sessitsch A. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry 42(5):669−78

doi: 10.1016/j.soilbio.2009.11.024
[2]

Hestrin R, Hammer EC, Mueller CW, Lehmann J. 2019. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Communications Biology 2(1):233

doi: 10.1038/s42003-019-0481-8
[3]

Yao Q, Li Z, Song Y, Wright SJ, Guo X, et al. 2018. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nature Ecology & Evolution 2(3):499−509

doi: 10.1038/s41559-017-0463-5
[4]

Hiruma K, Gerlach N, Sacristán S, Nakano RT, Hacquard S, et al. 2016. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165(2):464−74

doi: 10.1016/j.cell.2016.02.028
[5]

Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM. 2002. Thermotolerance generated by plant/fungal symbiosis. Science 298:1581−81

doi: 10.1126/science.1078055
[6]

Shi X, Zhao Y, Xu M, Ma L, Adams JM, et al. 2024. Insights into plant–microbe interactions in the rhizosphere to promote sustainable agriculture in the new crops era. New Crops 1:100004

doi: 10.1016/j.ncrops.2023.11.002
[7]

Wen YC, Li HY, Lin ZA, Zhao BQ, Sun ZB, et al. 2020. Long-term fertilization alters soil properties and fungal community composition in fluvo-aquic soil of the North China Plain. Scientific Reports 10:7198

doi: 10.1038/s41598-020-64227-6
[8]

Zhang YB. 2011. Sugarcane industry development technology (in Chinese). pp. 94−98. Beijing: China Agriculture Press

[9]

Ma Q, Bell R, Biddulph B. 2019. Potassium application alleviates grain sterility and increases yield of wheat (Triticum aestivum) in frost-prone Mediterranean-type climate. Plant and Soil 434(1):203−16

doi: 10.1007/s11104-018-3620-y
[10]

Tränkner M, Tavakol E, Jákli B. 2018. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum 163(3):414−31

doi: 10.1111/ppl.12747
[11]

Wu Q, Li Z, Lu W, Liang F, Zhang Y, et al. 2024. LC05-136 originates from ROC22, green arising from blue and surpassing blue. Tropical Plants 3(1):e024

doi: 10.48130/tp-0024-0027
[12]

Wu Q, Li A, Liu J, Zhao Y, Zhao P, et al. 2024. Sugarcane variety YZ05-51 with high yield and strong resistance: breeding and cultivation perspectives. Tropical Plants 3:e019

doi: 10.48130/tp-0024-0019
[13]

Zhang Y, Liu S, Guo J. 2008. Sugarcane nutrition requirement and balanced fertilization methods. Sugar Crops of China 30(2):58−60+63 (in Chinese)

doi: 10.3969/j.issn.1007-2624.2008.02.022
[14]

Lu S, Deng L, Zhang C, Tu P, Xu R, et al. 2010. Effects of potassium distribution on the growth of sugarcane under drip fertigation. Journal of Irrigation and Drainage 29(1):60−63 (in Chinese)

[15]

Huang Z, Zhou W, Ao J, Chen W, Huang Y, et al. 2020. Sugarcane yield and soil potassium balance in potassium application of four consecutive years. Chinese Journal of Tropical Crops 41(7):1347−53 (in Chinese)

doi: 10.3969/j.issn.1000-2561.2020.07.009
[16]

Xie J, Li C, Li Y, Liang Q, Liu X, et al. 2019. Effects of potassium fertilizer application amount on sugarcane yield, sugar accumulation and stress resistance. Soil and Fertilizer Sciences in China 2019(2):133−38 (in Chinese)

doi: 10.11838/sfsc.1673-6257.18212
[17]

Johnson RM, Richard KA, Read QD. 2024. Effects of potassium fertilizer on sugarcane yields and plant and soil potassium levels in louisiana. Agronomy 14(12):2761

doi: 10.3390/agronomy14122761
[18]

Liu J, Wang D, Yan X, Jia L, Chen N, et al. 2024. Effect of nitrogen, phosphorus and potassium fertilization management on soil properties and leaf traits and yield of Sapindus mukorossi. Frontiers in Plant Science 15:1300683

doi: 10.3389/fpls.2024.1300683
[19]

Agegnehu G, Amede T. 2017. Integrated soil fertility and plant nutrient management in tropical agro-ecosystems: a review. Pedosphere 27(4):662−80

doi: 10.1016/S1002-0160(17)60382-5
[20]

Sardans J, Peñuelas J. 2015. Potassium: a neglected nutrient in global change. Global Ecology and Biogeography 24(3):261−75

doi: 10.1111/geb.12259
[21]

Bao SD. 2000. Agrochemical Analysis of Soil. 3rd Edition. pp. 22−162. Beijing: China Agriculture Press

[22]

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, et al. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research 35(21):7188−96

doi: 10.1093/nar/gkm864
[23]

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194−200

doi: 10.1093/bioinformatics/btr381
[24]

Li HY, Wang H, Wang HT, Xin PY, Xu XH, et al. 2018. The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales. Microbiome 6:187

doi: 10.1186/s40168-018-0561-x
[25]

Lai J, Zou Y, Zhang J, Peres-Neto PR. 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution 13(4):782−88

doi: 10.1111/2041-210X.13800
[26]

Wang C, Lv J, Xie J, Yu J, Li J, et al. 2021. Effect of slow-release fertilizer on soil fertility and growth and quality of wintering Chinese chives (Allium tuberm Rottler ex Spreng.) in greenhouses. Scientific Reports 11:8070

doi: 10.1038/s41598-021-87593-1
[27]

Tan Y, Wang J, He Y, Yu X, Chen S, et al. 2023. Organic fertilizers shape soil microbial communities and increase soil amino acid metabolites content in a blueberry orchard. Microbial Ecology 85:232−46

doi: 10.1007/s00248-022-01960-7
[28]

Sun R, Zhang XX, Guo X, Wang D, Chu H. 2015. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry 88(4):9−18

doi: 10.1016/j.soilbio.2015.05.007
[29]

Sun Z, Lin M, Du C, Hao Y, Zhang Y, et al. 2022. The use of manure shifts the response of α-diversity and network while not β-diversity of soil microbes to altered irrigation regimes. Applied Soil Ecology 174:104423

doi: 10.1016/j.apsoil.2022.104423
[30]

Mao H, Leng K, Chen X, Zhang J, Liu K, et al. 2025. Changes in fertility and microbial communities of red soil and their contribution to crop yield following long-term different fertilization. Journal of Soils and Sediments 25(4):1115−33

doi: 10.1007/s11368-025-03991-2
[31]

Zhang Z, Dao J, Wang Y, Ai J, Liu J, et al. 2025. Effects of potassium fertilization application on microbial community and transcriptome in sugarcane tillering stages. Tropical Plant Biology 18:29

doi: 10.1007/s12042-025-09396-2
[32]

Cui X, Zhang Y, Gao J, Peng F, Gao P. 2018. Long-term combined application of manure and chemical fertilizer sustained higher nutrient status and rhizospheric bacterial diversity in reddish paddy soil of Central South China. Scientific Reports 8:16554

doi: 10.1038/s41598-018-34685-0
[33]

Chaudhry V, Rehman A, Mishra A, Chauhan PS, Nautiyal CS. 2012. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microbial Ecology 64(2):450−60

doi: 10.1007/s00248-012-0025-y
[34]

Shrestha M, Shrestha PM, Frenzel P, Conrad R. 2010. Effect of nitrogen fertilization on methane oxidation, abundance, community structure, and gene expression of methanotrophs in the rice rhizosphere. The ISME Journal 4(12):1545−56

doi: 10.1038/ismej.2010.89
[35]

Wu L, Jiang Y, Zhao F, He X, Liu H, et al. 2020. Increased organic fertilizer application and reduced chemical fertilizer application affect the soil properties and bacterial communities of grape rhizosphere soil. Scientific Reports 10:9568

doi: 10.1038/s41598-020-66648-9
[36]

Zhao L, Liu Y, Wang Z, Yuan S, Qi J, et al. 2020. Bacteria and fungi differentially contribute to carbon and nitrogen cycles during biological soil crust succession in arid ecosystems. Plant and Soil 447:379−92

doi: 10.1007/s11104-019-04391-5
[37]

Xi N, Chu C, Bloor JMG. 2018. Plant drought resistance is mediated by soil microbial community structure and soil-plant feedbacks in a savanna tree species. Environmental and Experimental Botany 155:695−701

doi: 10.1016/j.envexpbot.2018.08.013
[38]

Du L, Tang M, Zhu Z, Wei L, Wei X, et al. 2018. Effects of long-term fertilization on enzyme activities in profile of paddy soil profiles. Environmental Science 39(8):3901−9 (in Chinese)

doi: 10.13227/j.hjkx.201711234
[39]

Fan K, Delgado-Baquerizo M, Guo X, Wang D, Zhu YG, et al. 2020. Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment. Soil Biology and Biochemistry 141:107679

doi: 10.1016/j.soilbio.2019.107679