[1]

Sajid Z, Yang Y, You P, Deng H, Cheng X, et al. 2022. An explorative methodology to assess the risk of fire and human fatalities in a subway station using fire dynamics simulator (FDS). Fire 5(3):69

doi: 10.3390/fire5030069
[2]

Liu C, Zhong M, Tian X, Zhang P, Xiao Y, et al. 2019. Experimental and numerical study on fire-induced smoke temperature in connected area of metro tunnel under natural ventilation. International Journal of Thermal Sciences 138:84−97

doi: 10.1016/j.ijthermalsci.2018.12.037
[3]

Huang DF, Li SC. 2018. An experimental investigation of stratification characteristic of fire smoke in the corridor under the effect of outdoor wind. Journal of Wind Engineering and Industrial Aerodynamics 179:173−83

doi: 10.1016/j.jweia.2018.05.021
[4]

Park DK, Park KH, Ko JS, Kim YS, Chung NE, et al. 2009. The role of forensic anthropology in the examination of the Daegu subway disaster (2003, Korea). Journal of Forensic Sciences 54(3):513−18

doi: 10.1111/j.1556-4029.2009.01027.x
[5]

Kyriakidis M, Hirsch R, Majumdar A. 2012. Metro railway safety: an analysis of accident precursors. Safety Science 50(7):1535−48

doi: 10.1016/j.ssci.2012.03.004
[6]

Xu P, Jiang S, Zhou J, Chen D, Xie Y, et al. 2015. Experimental study on smoke temperature distribution in immersed tunnel fire scenarios. Modern Tunnelling Technology 52(5):79−83

doi: 10.13807/j.cnki.mtt.2015.05.012
[7]

Cong W, He K, Yang H, Shi L, Cheng XD. 2022. Experimental study on temperature characteristics in a subway train carriage with lateral openings in a longitudinally ventilated tunnel. Tunnelling and Underground Space Technology 131:104814

doi: 10.1016/j.tust.2022.104814
[8]

Li M, Jiang Y, Wu Z, Fan R. 2021. Real-time prediction of smoke spread affected by multiple factors in subway tunnel using CAERES-DNN model. Fire Technology 57(4):2025−59

doi: 10.1007/s10694-021-01109-x
[9]

Wu J, Hu Z, Chen J, Li Z. 2018. Risk assessment of underground subway stations to fire disasters using bayesian network. Sustainability 10(10):3810

doi: 10.3390/su10103810
[10]

Yang Y, Liu C, Long Z, Qiu P, Chen J, et al. 2020. Full-scale experimental study on fire under vehicle operations in a sloped tunnel. International Journal of Thermal Sciences 158:106524

doi: 10.1016/j.ijthermalsci.2020.106524
[11]

Palm A, Kumm M, Ingason H. 2016. Full scale firefighting tests in the tistbrottet mine. Fire Technology 52(5):1519−37

doi: 10.1007/s10694-015-0476-z
[12]

Lemaire T, Kenyon Y. 2006. Large scale fire tests in the second Benelux tunnel. Fire Technology 42(4):329−50

doi: 10.1007/s10694-006-8434-4
[13]

Peng M, He K, Yang H, Cong W, Cheng X, et al. 2020. Experimental study on fire plume characteristics in a subway carriage with doors. Fire Technology 56(2):401−23

doi: 10.1007/s10694-019-00882-0
[14]

Cong W, Cheng X, Shi L, He K. 2024. Study on smoke propagation characteristics of a carriage fire in longitudinally ventilated tunnel. Fire Technology 60(3):2231−47

doi: 10.1007/s10694-024-01569-x
[15]

Zhang S, Cheng X, Yao Y, Zhu K, Li K, et al. 2016. An experimental investigation on blockage effect of metro train on the smoke back-layering in subway tunnel fires. Applied Thermal Engineering 99:214−23

doi: 10.1016/j.applthermaleng.2015.12.085
[16]

Chen J, Long Z, Wang L, Xu B, Bai Q, et al. 2022. Fire evacuation strategy analysis in long metro tunnels. Safety Science 147:105603

doi: 10.1016/j.ssci.2021.105603
[17]

Park S, Lee H, Kwon M, Jung H, Jung H. 2022. Understanding experiences of older adults in virtual reality environments with a subway fire disaster scenario. Universal Access in the Information Society 22(3):771−83

doi: 10.1007/s10209-022-00878-8
[18]

Wang M, Liu H, Wang F, Shen L, Weng M. 2022. Effect of the metro train on the smoke back-layering length under different tunnel cross-sections. Applied Sciences 12(13):6775

doi: 10.3390/app12136775
[19]

Long Z, Chen J, Qiu P, Zhong M. 2022. Study on the smoke layer height in subway platform fire under natural ventilation. Journal of Building Engineering 56:104758

doi: 10.1016/j.jobe.2022.104758
[20]

Wu Z, Peng M, Zhou Y, Zhu G. 2024. Study on the smoke evolution mechanism of a subway tunnel with a multi-door carriage fire under longitudinal ventilation. Fire and Materials 48(3):380−93

doi: 10.1002/fam.3190
[21]

Wang X, Zhu G, Cheng D, Zhang G, He L, et al. 2024. Study on the influence of slope on smoke overflow and temperature characteristics of carriages with lateral openings in subway fires. Case Studies in Thermal Engineering 58:104397

doi: 10.1016/j.csite.2024.104397
[22]

Tang Y, Bi W, Varga L, Dolan T, Li Q. 2022. An integrated framework for managing fire resilience of metro station system: Identification, assessment, and optimization. International Journal of Disaster Risk Reduction 77:103037

doi: 10.1016/j.ijdrr.2022.103037
[23]

Merigó JM, Cancino CA, Coronado F, Urbano D. 2016. Academic research in innovation: a country analysis. Scientometrics 108(2):559−93

doi: 10.1007/s11192-016-1984-4
[24]

Chen C. 2006. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology 57(3):359−77

doi: 10.1002/asi.20317
[25]

van Eck NJ, Waltman L. 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523−38

doi: 10.1007/s11192-009-0146-3
[26]

Wang H, Liu H, Yao J, Ye D, Lang Z, et al. 2021. Mapping the knowledge domains of new energy vehicle safety: informetrics analysis-based studies. Journal of Energy Storage 35:102275

doi: 10.1016/j.est.2021.102275
[27]

Lang Z, Wang D, Liu H, Gou X. 2021. Mapping the knowledge domains of research on corrosion of petrochemical equipment: An informetrics analysis-based study. Engineering Failure Analysis 129:105716

doi: 10.1016/j.engfailanal.2021.105716
[28]

Fan C, Chen J, Zhou Y, Liu X. 2018. Effects of fire location on the capacity of smoke exhaust from natural ventilation shafts in urban tunnels. Fire and Materials 42(8):974−84

doi: 10.1002/fam.2683
[29]

Wang X, Liu H, Pan K, Huang R, Gou X, et al. 2023. Exploring thermal hazard of lithium-ion batteries by bibliometric analysis. Journal of Energy Storage 67:107578

doi: 10.1016/j.est.2023.107578
[30]

Roh JS, Ryou HS, Yoon SW. 2010. The effect of PSD on life safety in subway station fire. Journal of Mechanical Science and Technology 24(4):937−42

doi: 10.1007/s12206-010-0217-7
[31]

Zhou D, Li J, Hu T, Chen T. 2023. Influence of subway train fire locations on the characteristics of smoke movement in a curved tunnel. PLoS One 18(1):e0279818

doi: 10.1371/journal.pone.0279818
[32]

Zhang S, Yao Y, Zhu K, Li K, Zhang R, et al. 2016. Prediction of smoke back-layering length under different longitudinal ventilations in the subway tunnel with metro train. Tunnelling and Underground Space Technology 53:13−21

doi: 10.1016/j.tust.2015.12.013
[33]

Zhang S, Shi L, Li X, Huang Y, He K, et al. 2020. Critical ventilation velocity under the blockage of different metro train in a long metro tunnel. Fire and Materials 44(4):497−505

doi: 10.1002/fam.2804
[34]

Zhou D, Hu T, Wang Z, Chen T, Li X. 2021. Influence of tunnel slope on movement characteristics of thermal smoke in a moving subway train fire. Case Studies in Thermal Engineering 28:101472

doi: 10.1016/j.csite.2021.101472
[35]

Chen J, Long Z, Liu C, Cai S, Xu B, et al. 2022. Investigation of the performance of lateral ventilation in subway station fires. Journal of Wind Engineering and Industrial Aerodynamics 228:105133

doi: 10.1016/j.jweia.2022.105133
[36]

Li W, Liu T, Chen Z, Guo Z, Huo X. 2020. Comparative study on the unsteady slipstream induced by a single train and two trains passing each other in a tunnel. Journal of Wind Engineering and Industrial Aerodynamics 198:104095

doi: 10.1016/j.jweia.2020.104095
[37]

Xu ZS, You W, Kong J, Cao HH, Zhou C. 2017. A study of fire smoke spreading and control in emergency rescue stations of extra-long railway tunnels. Journal of Loss Prevention in the Process Industries 49:155−61

doi: 10.1016/j.jlp.2017.06.014
[38]

Cai Q, Tang S, He L, Hu Q, Li Z, et al. 2022. A safety risk decision approach to fire secondary accidents in operating subway environment. Fresenius Environmental Bulletin 31(7):6800−18

[39]

Yang X, Luo Y, Li Z, Guo H, Zhang Y. 2021. Experimental investigation on the smoke back-layering length in a branched tunnel fire considering different longitudinal ventilations and fire locations. Case Studies in Thermal Engineering 28:101497

doi: 10.1016/j.csite.2021.101497
[40]

Zhang J, Zhu J, Dang P, Wu J, Zhou Y, et al. 2023. An improved social force model (ISFM)-based crowd evacuation simulation method in virtual reality with a subway fire as a case study. International Journal of Digital Earth 16(1):1186−204

doi: 10.1080/17538947.2023.2197261
[41]

Winz I, Brierley G, Trowsdale S. 2009. The use of system dynamics simulation in water resources management. Water Resources Management 23(7):1301−23

doi: 10.1007/s11269-008-9328-7
[42]

Kelly (Letcher) RA, Jakeman AJ, Barreteau O, Borsuk ME, ElSawah S, et al. 2013. Selecting among five common modelling approaches for integrated environmental assessment and management. Environmental Modelling & Software 47:159−81

doi: 10.1016/j.envsoft.2013.05.005
[43]

Wang F, Liu F, Obadi I, Weng M. 2023. Study on the smoke propagation characteristics of metro tunnel fire under the effects of piston wind. Indoor and Built Environment 32(1):149−69

doi: 10.1177/1420326X21998420
[44]

Zhao S, Liu F, Wang J, Obadi I, Weng M, et al. 2020. Experimental investigation on fire smoke bifurcation flow in longitudinal ventilated tunnels. Fire and Materials 44(5):648−59

doi: 10.1002/fam.2828
[45]

Han J, Wang Z, Geng P, Wang F, Wen J, et al. 2021. The effect of blockage and tunnel slope on smoke spread and ceiling temperature distribution in a natural-ventilated metro depot. Energy and Buildings 253:111540

doi: 10.1016/j.enbuild.2021.111540
[46]

Liu Y, Li YZ, Ingason H, Liu F. 2021. Control of thermal-driven smoke flow at stairways in a subway platform fire. International Journal of Thermal Sciences 165:106937

doi: 10.1016/j.ijthermalsci.2021.106937
[47]

Wang F, He X, Xu L, Zhao S, Weng M. 2024. Train-induced unsteady airflow in a metro tunnel with a ventilation shaft. Applied Sciences-Basel 14(20):9177

doi: 10.3390/app14209177
[48]

Yao Y, Cheng X, Zhang S, Zhu K, Shi L, et al. 2016. Smoke back-layering flow length in longitudinal ventilated tunnel fires with vertical shaft in the upstream. Applied Thermal Engineering 107:738−46

doi: 10.1016/j.applthermaleng.2016.07.027
[49]

Yan WY, Wang JH, Jiang JC. 2016. Subway fire cause analysis model based on system dynamics: a preliminary model framework. Procedia Engineering 135:431−38

doi: 10.1016/j.proeng.2016.01.152
[50]

Peng M, Cheng X, He K, Cong W, Shi L, et al. 2020. Experimental study on ceiling smoke temperature distributions in near field of pool fires in the subway train. Journal of Wind Engineering and Industrial Aerodynamics 199:104135

doi: 10.1016/j.jweia.2020.104135
[51]

Ju W, Wu J, Kang Q, Jiang J, Xing Z. 2022. Fire risk assessment of subway stations based on combination weighting of game theory and TOPSIS method. Sustainability 14(12):7275

doi: 10.3390/su14127275
[52]

Song H, Chen Q, Wu Z, Yao H, Lou Z, et al. 2023. Sensitivity analysis of influencing factors of fire smoke transport on subway station platforms. Fire 6(12):448

doi: 10.3390/fire6120448
[53]

Wang J, Wang Y, Wu F, Wu P, Jiang J. 2022. Study on emergency ventilation mode for multisource fires in a typical interchange subway station. International Journal of Ventilation 21(2):157−76

doi: 10.1080/14733315.2020.1817284
[54]

Zhao D, Jiang J, Zhou R, Tong Y, Wu F, et al. 2016. Numerical study on the optimisation of smoke ventilation mode for interchange subway station fire. International Journal of Ventilation 15(1):79−93

doi: 10.1080/14733315.2016.1173294
[55]

Tang F, Cao Z, Palacios A, Wang Q. 2018. A study on the maximum temperature of ceiling jet induced by rectangular-source fires in a tunnel using ceiling smoke extraction. International Journal of Thermal Sciences 127:329−34

doi: 10.1016/j.ijthermalsci.2018.02.001
[56]

Li YZ, Ingason H. 2018. Overview of research on fire safety in underground road and railway tunnels. Tunnelling and Underground Space Technology 81:568−89

doi: 10.1016/j.tust.2018.08.013
[57]

Fan C, Zhang L, Jiao S, Yang Z, Li M, et al. 2018. Smoke spread characteristics inside a tunnel with natural ventilation under a strong environmental wind. Tunnelling and Underground Space Technology 82:99−110

doi: 10.1016/j.tust.2018.08.004
[58]

Meng N, Hu L, Wu L, Yang L, Zhu S, et al. 2014. Numerical study on the optimization of smoke ventilation mode at the conjunction area between tunnel track and platform in emergency of a train fire at subway station. Tunnelling and Underground Space Technology 40:151−59

doi: 10.1016/j.tust.2013.09.014
[59]

Qin J, Liu C, Huang Q. 2020. Simulation on fire emergency evacuation in special subway station based on Pathfinder. Case Studies in Thermal Engineering 21:100677

doi: 10.1016/j.csite.2020.100677
[60]

Lin J, Zhu R, Li N, Becerik-Gerber B. 2020. Do people follow the crowd in building emergency evacuation?A cross-cultural immersive virtual reality-based study. Advanced Engineering Informatics 43:101040

doi: 10.1016/j.aei.2020.101040
[61]

Huang Y, Li Y, Dong B, Li J, Liang Q. 2018. Numerical investigation on the maximum ceiling temperature and longitudinal decay in a sealing tunnel fire. Tunnelling and Underground Space Technology 72:120−30

doi: 10.1016/j.tust.2017.11.021
[62]

Weng MC, Lu XL, Liu F, Du CX. 2016. Study on the critical velocity in a sloping tunnel fire under longitudinal ventilation. Applied Thermal Engineering 94:422−34

doi: 10.1016/j.applthermaleng.2015.10.059
[63]

Weng MC, Lu XL, Liu F, Shi XP, Yu LX. 2015. Prediction of backlayering length and critical velocity in metro tunnel fires. Tunnelling and Underground Space Technology 47:64−72

doi: 10.1016/j.tust.2014.12.010
[64]

Yi L, Xu Q, Xu Z, Wu D. 2014. An experimental study on critical velocity in sloping tunnel with longitudinal ventilation under fire. Tunnelling and Underground Space Technology 43:198−203

doi: 10.1016/j.tust.2014.05.017
[65]

Gang H. 2011. Simulation analysis of coal mine safety management based on system dynamics. Energy Procedia 5:270−74

doi: 10.1016/j.egypro.2011.03.048
[66]

Liu C, Zhong M, Song S, Xia F, Tian X, et al. 2020. Experimental and numerical study on critical ventilation velocity for confining fire smoke in metro connected tunnel. Tunnelling and Underground Space Technology 97:103296

doi: 10.1016/j.tust.2020.103296
[67]

Meng N, Wang Q, Liu Z, Li X, Yang H. 2017. Smoke flow temperature beneath tunnel ceiling for train fire at subway station: reduced-scale experiments and correlations. Applied Thermal Engineering 115:995−1003

doi: 10.1016/j.applthermaleng.2017.01.027
[68]

Kannan U, Swamidurai R. 2019. Empirical validation of system dynamics cyber security models. 2019 SoutheastCon, 11−14 April 2019, Huntsville, AL, USA. USA: IEEE. pp. 1−6 doi: 10.1109/southeastcon42311.2019.9020607