[1]

Zhang Q. 2007. Strategies for developing green super rice. Proceedings of the National Academy of Sciences of the United States of America 104(42):16402−9

doi: 10.1073/pnas.0708013104
[2]

Liu W, Liu J, Triplett L, Leach JE, Wang GL. 2014. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annual Review of Phytopathology 52:213−41

doi: 10.1146/annurev-phyto-102313-045926
[3]

Yang XC, Hwa CM. 2008. Genetic modification of plant architecture and variety improvement in rice. Heredity 101(5):396−404

doi: 10.1038/hdy.2008.90
[4]

Wang Y, Shang L, Yu H, Zeng L, Hu J, et al. 2020. A strigolactone biosynthesis gene contributed to the green revolution in rice. Molecular Plant 13(6):923−32

doi: 10.1016/j.molp.2020.03.009
[5]

Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, et al. 2008. Strigolactone inhibition of shoot branching. Nature 455(7210):189−94

doi: 10.1038/nature07271
[6]

Li S, Chen L, Li Y, Yao R, Wang F, et al. 2016. Effect of GR24 stereoisomers on plant development in Arabidopsis. Molecular Plant 9(10):1432−35

doi: 10.1016/j.molp.2016.06.012
[7]

Decker EL, Alder A, Hunn S, Ferguson J, Lehtonen MT, et al. 2017. Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens. New Phytologist 216(2):455−68

doi: 10.1111/nph.14506
[8]

Bonfante P, Genre A. 2015. Arbuscular mycorrhizal dialogues: do you speak 'plantish' or 'fungish'? Trends in Plant Science 20(3):150−54

doi: 10.1016/j.tplants.2014.12.002
[9]

Yao R, Ming Z, Yan L, Li S, Wang F, et al. 2016. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536(7617):469−73

doi: 10.1038/nature19073
[10]

Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, et al. 2005. Suppression of tiller bud ctivity in tillering dwarf mutants of rice. Plant & Cell Physiology 46(1):79−86

doi: 10.1093/pcp/pci022
[11]

Shen H, Zhu L, Bu QY, Huq E. 2012. MAX2 affects multiple hormones to promote photomorphogenesis. Molecular Plant 5(3):750−62

doi: 10.1093/mp/sss029
[12]

Jiang L, Liu X, Xiong G, Liu H, Chen F, et al. 2013. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504(7480):401−5

doi: 10.1038/nature12870
[13]

Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, et al. 2013. D14−SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature 504(7480):406−10

doi: 10.1038/nature12878
[14]

Ma H, Duan J, Ke J, He Y, Gu X, et al. 2017. A D53 repression motif induces oligomerization of TOPLESS corepressors and promotes assembly of a corepressor-nucleosome complex. Science Advances 3(6):e1601217

doi: 10.1126/sciadv.1601217
[15]

Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, et al. 2011. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 108(21):8897−902

doi: 10.1073/pnas.1100987108
[16]

Wang L, Wang B, Jiang L, Liu X, Li X, et al. 2015. Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation. The Plant Cell 27(11):3128−42

doi: 10.1105/tpc.15.00605
[17]

Gupta D, Bhattacharjee O, Mandal D, Sen MK, Dey D, et al. 2019. CRISPR-Cas9 system: a new-fangled dawn in gene editing. Life Sciences 232:116636

doi: 10.1016/j.lfs.2019.116636
[18]

Ma Y, Zhang L, Huang X. 2014. Genome modification by CRISPR/Cas9. The FEBS Journal 281(23):5186−93

doi: 10.1111/febs.13110
[19]

Hryhorowicz M, Lipiński D, Zeyland J, Słomski R. 2017. CRISPR/Cas9 immune system as a tool for genome engineering. Archivum Immunologiae et Therapiae Experimentalis 65(3):233−40

doi: 10.1007/s00005-016-0427-5
[20]

Redman M, King A, Watson C, King D. 2016. What is CRISPR/Cas9? ADC Education & Practice 101(4):213

doi: 10.1136/archdischild-2016-310459
[21]

Yan P, Zhu Y, Wang Y, Ma F, Lan D, et al. 2022. A new RING finger protein, PLANT ARCHITECTURE and GRAIN NUMBER 1, affects plant architecture and grain yield in rice. International Journal of Molecular Sciences 23(2):824

doi: 10.3390/ijms23020824
[22]

Dong S, Dong X, Han X, Zhang F, Zhu Y, et al. 2021. OsPDCD5 negatively regulates plant architecture and grain yield in rice. Proceedings of the National Academy of Sciences of the United States of America 118(29):e2018799118

doi: 10.1073/pnas.2018799118
[23]

Xu C, Wang Y, Yu Y, Duan J, Liao Z, et al. 2012. Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering. Nature Communications 3(1):750

doi: 10.1038/ncomms1743
[24]

Yadav B, Majhi A, Phagna K, Meena MK, Ram H. 2023. Negative regulators of grain yield and mineral contents in rice: potential targets for CRISPR-Cas9-mediated genome editing. Functional & Integrative Genomics 23(4):317

doi: 10.1007/s10142-023-01244-4
[25]

Gao Q, Li G, Sun H, Xu M, Wang H, et al. 2020. Targeted mutagenesis of the rice FW 2.2-like gene family using the CRISPR/Cas9 system reveals OsFWL4 as a regulator of tiller number and plant yield in rice. International Journal of Molecular Sciences 21(3):809

doi: 10.3390/ijms21030809
[26]

Xie X, Ma X, Zhu Q, Zeng D, Li G, et al. 2017. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Molecular Plant 10(9):1246−49

doi: 10.1016/j.molp.2017.06.004
[27]

Xie K, Minkenberg B, Yang Y. 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proceedings of the National Academy of Sciences of the United States of America 112(11):3570−75

doi: 10.1073/pnas.1420294112
[28]

Cota-Sánchez JH, Remarchuk K, Ubayasena K. 2006. Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Molecular Biology Reporter 24(2):161−67

doi: 10.1007/BF02914055
[29]

Hu XH, Shen S, Wu JL, Liu J, Wang H, et al. 2023. A natural allele of proteasome maturation factor improves rice resistance to multiple pathogens. Nature Plants 9(2):228−37

doi: 10.1038/s41477-022-01327-3
[30]

Han X, Yang Y, Wang X, Zhou J, Zhang W, et al. 2014. Quantitative trait loci apping for bacterial blight resistance in rice using bulked segregant analysis. International Journal of Molecular Sciences 15(7):11847−61

doi: 10.3390/ijms150711847
[31]

Li S, Shen L, Hu P, Liu Q, Zhu X, et al. 2019. Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing. Journal of Integrative Plant Biology 61(12):1201−5

doi: 10.1111/jipb.12774
[32]

Li S, Luo Y, Wei G, Zong W, Zeng W, et al. 2023. Improving yield-related traits by editing the promoter of the heading date gene Ehd1 in rice. Theoretical and Applied Genetics 136(12):239

doi: 10.1007/s00122-023-04489-6
[33]

Zheng S, Ye C, Lu J, Liufu J, Lin L, et al. 2021. Improving the rice photosynthetic efficiency and yield by editing OsHXK1 via CRISPR/Cas9 system. International Journal of Molecular Sciences 22(17):9554

doi: 10.3390/ijms22179554
[34]

Sha G, Sun P, Kong X, Han X, Sun Q, et al. 2023. Genome editing of a rice CDP-DAG synthase confers multipathogen resistance. Nature 618(7967):1017−23

doi: 10.1038/s41586-023-06205-2
[35]

Liu T, Zhang X, Zhang H, Cheng Z, Liu J, et al. 2022. Dwarf and High Tillering1 represses rice tillering through mediating the splicing of D14 pre-mRNA. The Plant Cell 34(9):3301−18

doi: 10.1093/plcell/koac169
[36]

Zheng X, Weng Q, Chen S, Sun X. 2017. Characterization and evolution analysis of the interaction interface of plant ASK1-D3( MAX2)-D14 complex. Journal of Fujian Agriculture and Forestry University (Natural Science Edition) 46(5):539−45

doi: 10.13323/j.cnki.j.fafu(nat.sci.).2017.05.010
[37]

Ha CV, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, et al. 2014. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences of the United States of America 111(2):851−56

doi: 10.1073/pnas.1322135111
[38]

Nasir F, Tian L, Shi S, Chang C, Ma L, et al. 2019. Strigolactones positively regulate defense against Magnaporthe oryzae in rice (Oryza sativa). Plant Physiology and Biochemistry 142:106−16

doi: 10.1016/j.plaphy.2019.06.028
[39]

Ye H, Hou Q, Lv H, Shi H, Wang D, et al. 2024. D53 represses rice blast resistance by directly targeting phenylalanine ammonia lyases. Journal of Integrative Plant Biology 66(9):1827−30

doi: 10.1111/jipb.13734
[40]

Yi F, Song A, Cheng K, Liu J, Wang C, et al. 2023. Strigolactones positively regulate Verticillium wilt resistance in cotton via crosstalk with other hormones. Plant Physiology 192(2):945−66

doi: 10.1093/plphys/kiad053
[41]

Piisilä M, Keceli MA, Brader G, Jakobson L, Jõesaar I, et al. 2015. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana. BMC Plant Biology 15(1):53

doi: 10.1186/s12870-015-0434-4