[1]

Feng J, Liu L, Zhang Y, Wang Q, Liang H, et al. 2023. Rethinking the pathway to sustainable fire retardants. Exploration 3(4):20220088

doi: 10.1002/EXP.20220088
[2]

McKenna ST, Jones N, Peck G, Dickens K, Pawelec W, et al. 2019. Fire behaviour of modern façade materials–Understanding the Grenfell Tower fire. Journal of Hazardous Materials 368:115−23

doi: 10.1016/j.jhazmat.2018.12.077
[3]

Fu T, Guo DM, Chen L, Wu WS, Wang XL, et al. 2020. Fire hazards management for polymeric materials via synergy effects of pyrolysates-fixation and aromatized-charring. Journal of Hazardous Materials 389:122040

doi: 10.1016/j.jhazmat.2020.122040
[4]

Irvine D, McCluskey J, Robinson I. 2000. Fire hazards and some common polymers. Polymer Degradation and Stability 67(3):383−96

doi: 10.1016/S0141-3910(99)00127-5
[5]

Costes L, Laoutid F, Brohez S, Dubois P. 2017. Bio-based flame retardants: When nature meets fire protection. Materials science and engineering: R: Reports 117:1−25

doi: 10.1016/j.mser.2017.04.001
[6]

Quan Y, Zhang Z, Tanchak RN, Wang Q. 2022. A review on cone calorimeter for assessment of flame-retarded polymer composites. Journal of Thermal Analysis and Calorimetry 147(19):10209−34

doi: 10.1007/s10973-022-11279-7
[7]

Wang X, Kalali EN, Wan JT, Wang DY. 2017. Carbon-family materials for flame retardant polymeric materials. Progress in Polymer Science 69:22−46

doi: 10.1016/j.progpolymsci.2017.02.001
[8]

Shen R, Quan Y, Zhang Z, Ma R, Wang Q. 2022. Metal-organic framework as an efficient synergist for intumescent flame retardants against highly flammable polypropylene. Industrial & Engineering Chemistry Research 61(21):7292−302

doi: 10.1021/acs.iecr.2c00715
[9]

Quan Y, Shen R, Schweizer C, Parajuli P, Zhang Z, et al. 2023. Synergistic effects of zeolitic imidazolate frameworks (ZIFs) with different transition metals on intumescent flame-retarded polypropylene composites: a comparative study. Journal of Materials Science & Technology 155:102−10

doi: 10.1016/j.jmst.2023.01.015
[10]

Cheng XW, Zhang W, Wu YX, Ma YD, Xu JT, et al. 2021. Borate functionalized caramel as effective intumescent flame retardant for wool fabric. Polymer Degradation and Stability 186:109469

doi: 10.1016/j.polymdegradstab.2020.109469
[11]

Shen R, Yan TH, Ma R, Joseph E, Quan Y, et al. 2021. Flammability and thermal kinetic analysis of UiO-66-based PMMA polymer composites. Polymers 13(23):4113

doi: 10.3390/polym13234113
[12]

Dasari A, Yu ZZ, Cai GP, Mai YW. 2013. Recent developments in the fire retardancy of polymeric materials. Progress in Polymer Science 38(9):1357−87

doi: 10.1016/j.progpolymsci.2013.06.006
[13]

Morgan AB. 2019. The future of flame retardant polymers–unmet needs and likely new approaches. Polymer Reviews 59(1):25−54

doi: 10.1080/15583724.2018.1454948
[14]

Pachauri RK, Reisinger A. 2007. Climate change 2007: Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC

[15]

Réti C, Casetta M, Duquesne S, Bourbigot S, Delobel R. 2008. Flammability properties of intumescent PLA including starch and lignin. Polymers for Advanced Technologies 19(6):628−35

doi: 10.1002/pat.1130
[16]

Xing W, Yuan H, Zhang P, Yang H, Song L, et al. 2013. Functionalized lignin for halogen-free flame retardant rigid polyurethane foam: Preparation, thermal stability, fire performance and mechanical properties. Journal of Polymer Research 20(9):234

doi: 10.1007/s10965-013-0234-1
[17]

Liu Y, Zhang A, Cheng Y, Li M, Cui Y, et al. 2023. Recent advances in biomass phytic acid flame retardants. Polymer Testing 124:108100

doi: 10.1016/j.polymertesting.2023.108100
[18]

Alongi J, Di Blasio A, Milnes J, Malucelli G, Bourbigot S, et al. 2015. Thermal degradation of DNA, an all-in-one natural intumescent flame retardant. Polymer Degradation and Stability 113:110−18

doi: 10.1016/j.polymdegradstab.2014.11.001
[19]

Costes L, Laoutid F, Dumazert L, Lopez-Cuesta JM, Brohez S, et al. 2015. Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly (lactic acid). Polymer Degradation and Stability 119:217−27

doi: 10.1016/j.polymdegradstab.2015.05.014
[20]

Yang H, Yu B, Xu X, Bourbigot S, Wang H, et al. 2020. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chemistry 22(7):2129−61

doi: 10.1039/D0GC00449A
[21]

De Chirico A, Armanini M, Chini P, Cioccolo G, Provasoli F, et al. 2003. Flame retardants for polypropylene based on lignin. Polymer Degradation and Stability 79(1):139−45

doi: 10.1016/S0141-3910(02)00266-5
[22]

He W, Song P, Yu B, Fang Z, Wang H. 2020. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Progress in Materials Science 114:100687

doi: 10.1016/j.pmatsci.2020.100687
[23]

Zhang R, Xiao X, Tai Q, Huang H, Hu Y. 2012. Modification of lignin and its application as char agent in intumescent flame-retardant poly (lactic acid). Polymer Engineering & Science 52(12):2620−26

doi: 10.1002/pen.23214
[24]

Illy N, Fache M, Ménard R, Negrell C, Caillol S, et al. 2015. Phosphorylation of bio-based compounds: the state of the art. Polymer Chemistry 6(35):6257−91

doi: 10.1039/C5PY00812C
[25]

Velencoso MM, Battig A, Markwart JC, Schartel B, Wurm FR. 2018. Molecular firefighting—how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angewandte Chemie - International Edition 57(33):10450−67

doi: 10.1002/anie.201711735
[26]

Zhao X, Guerrero FR, Llorca J, Wang DY. 2016. New superefficiently flame-retardant bioplastic poly (lactic acid): flammability, thermal decomposition behavior, and tensile properties. ACS Sustainable Chemistry & Engineering 4(1):202−09

doi: 10.1021/acssuschemeng.5b00980
[27]

Tao K, Li J, Xu L, Zhao X, Xue L, et al. 2011. A novel phosphazene cyclomatrix network polymer: Design, synthesis and application in flame retardant polylactide. Polymer Degradation and Stability 96(7):1248−54

doi: 10.1016/j.polymdegradstab.2011.04.011
[28]

Bauer KN, Tee HT, Velencoso MM, Wurm FR. 2017. Main-chain poly(phosphoester)s: history, syntheses, degradation, bio-and flame-retardant applications. Progress in Polymer Science 73:61−122

doi: 10.1016/j.progpolymsci.2017.05.004
[29]

Fang Y, Liu X, Tao X. 2019. Intumescent flame retardant and anti-dripping of PET fabrics through layer-by-layer assembly of chitosan and ammonium polyphosphate. Progress in Organic Coatings 134:162−68

doi: 10.1016/j.porgcoat.2019.05.010
[30]

Chen M-J, Lazar S, Kolibaba TJ, Shen R, Quan Y, et al. 2020. Environmentally benign and self-extinguishing multilayer nanocoating for protection of flammable foam. ACS applied materials & interfaces 12(43):49130−37

doi: 10.1021/acsami.0c15329
[31]

Thakur VK, Thakur MK, Raghavan P, Kessler MR. 2014. Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustainable Chemistry & Engineering 2(5):1072−92

doi: 10.1021/sc500087z
[32]

Azman Mohammad Taib MN, Hamidon TS, Garba ZN, Trache D, Uyama H, et al. 2022. Recent progress in cellulose-based composites towards flame retardancy applications. Polymer 244:124677

doi: 10.1016/j.polymer.2022.124677
[33]

Wang M, Yin GZ, Yang Y, Fu W, Díaz Palencia JL, et al. 2023. Bio-based flame retardants to polymers: a review. Advanced Industrial and Engineering Polymer Research 6(2):132−55

doi: 10.1016/j.aiepr.2022.07.003
[34]

Zhang J, Li Z, Zhang L, García Molleja J, Wang DY. 2019. Bimetallic metal-organic frameworks and graphene oxide nano-hybrids for enhanced fire retardant epoxy composites: a novel carbonization mechanism. Carbon 153:407−16

doi: 10.1016/j.carbon.2019.07.003
[35]

Fang F, Ran S, Fang Z, Song P, Wang H. 2019. Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water. Composites Part B: Engineering 165:406−16

doi: 10.1016/j.compositesb.2019.01.086
[36]

Lazar S, Shen R, Quan Y, Palen B, Wang Q, et al. 2021. Mixed solvent synthesis of polydopamine nanospheres for sustainable multilayer flame retardant nanocoating. Polymer Chemistry 12(16):2389−96

doi: 10.1039/D1PY00111F
[37]

Palen B, Kolibaba TJ, Brehm JT, Shen R, Quan Y, et al. 2021. Clay-filled polyelectrolyte complex nanocoating for flame-retardant polyurethane foam. ACS Omega 6(12):8016−20

doi: 10.1021/acsomega.0c05354
[38]

Ma R, Shen R, Quan Y, Wang Q. 2022. Tunable flammability studies of graphene quantum dots-based polystyrene nanocomposites using microscale combustion calorimeter. Journal of Thermal Analysis and Calorimetry 147(19):10383−90

doi: 10.1007/s10973-022-11277-9
[39]

Smith DL, Rodriguez-Melendez D, Cotton SM, Quan Y, Wang Q, et al. 2022. Non-isocyanate polyurethane bio-foam with inherent heat and fire resistance. Polymers 14(22):5019

doi: 10.3390/polym14225019
[40]

Zhao M, Chen H, Zhu Z, Zhu X, Quan Y, et al. 2022. Multifunctional polyethylene nanocomposites based on polyethylene-grafted α-zirconium phosphate nanoplatelets. Polymer 261:125422

doi: 10.1016/j.polymer.2022.125422
[41]

Li WX, Zhang HJ, Hu XP, Yang WX, Cheng Z, et al. 2020. Highly efficient replacement of traditional intumescent flame retardants in polypropylene by manganese ions doped melamine phytate nanosheets. Journal of Hazardous Materials 398:123001

doi: 10.1016/j.jhazmat.2020.123001
[42]

Ma R, Shen R, Quan Y, Wang Q. 2023. Preparation of graphene quantum dots decorated montmorillonite to reinforce fire retardancy of polystyrene. Industrial & Engineering Chemistry Research 62(34):13510−18

doi: 10.1021/acs.iecr.3c02004
[43]

Quan Y, Shen R, Ma R, Zhang Z, Wang Q. 2022. Sustainable and efficient manufacturing of metal-organic framework-based polymer nanocomposites by reactive extrusion. ACS Sustainable Chemistry & Engineering 10(22):7216−22

doi: 10.1021/acssuschemeng.2c01720
[44]

Wang S, Zhang P, Li Y, Li J, Li X, et al. 2023. Recent advances and future challenges of the starch-based bio-composites for engineering applications. Carbohydrate Polymers 307:120627

doi: 10.1016/j.carbpol.2023.120627
[45]

Aggarwal P, Dollimore D. 1998. A thermal analysis investigation of partially hydrolyzed starch. Thermochimica Acta 319:17−25

doi: 10.1016/S0040-6031(98)00355-4
[46]

Xu Y, Miladinov V, Hanna MA. 2004. Synthesis and characterization of starch acetates with high substitution. Cereal chemistry 81(6):735−40

doi: 10.1094/CCHEM.2004.81.6.735
[47]

Battegazzore D, Alongi J, Fontaine G, Frache A, Bourbigot S, et al. 2015. Bulk vs. surface flame retardancy of fully bio-based polyamide 10, 10. RSC Advances 5(49):39424−32

doi: 10.1039/C5RA04149J
[48]

Nie S, Song L, Guo Y, Wu K, Xing W, et al. 2009. Intumescent flame retardation of starch containing polypropylene semibiocomposites: flame retardancy and thermal degradation. Industrial & Engineering Chemistry Research 48(24):10751−58

doi: 10.1021/ie9012198
[49]

Gavgani JN, Adelnia H, Mir Mohamad Sadeghi G, Zafari F. 2014. Intumescent flame retardant polyurethane/starch composites: thermal, mechanical, and rheological properties. Journal of Applied Polymer Science 131(23):41158

doi: 10.1002/app.41158
[50]

Kumar S, Shukla SK. 2023. Synergistic evolution of flame-retardant hybrid structure of poly vinyl alcohol, starch and kaolin for coating on wooden substrate. Journal of Polymer Research 30(2):71

doi: 10.1007/s10965-023-03463-6
[51]

Ji W, Wang D, Guo J, Fei B, Gu X, et al. 2020. The preparation of starch derivatives reacted with urea-phosphoric acid and effects on fire performance of expandable polystyrene foams. Carbohydrate Polymers 233:115841

doi: 10.1016/j.carbpol.2020.115841
[52]

Zhou H, Lu Y, Liang M, Jin Q, Yang Y, et al. 2024. A cationic, durable, P/N-containing starch-based flame retardant for cotton fabrics. International journal of biological macromolecules 260:129543

doi: 10.1016/j.ijbiomac.2024.129543
[53]

Zheng L, Zhan J, Wang J, Xu Z, Mu X. 2024. Highly efficient flame retardancy and fire spread behavior of rigid polyurethane foams with extremely low content of flame retardant. Polymer Degradation and Stability 230:111039

doi: 10.1016/j.polymdegradstab.2024.111039
[54]

Mu X, Jin Z, Chu F, Cai W, Zhu Y, et al. 2022. High-performance flame-retardant polycarbonate composites: Mechanisms investigation and fire-safety evaluation systems establishment. Composites Part B: Engineering 238:109873

doi: 10.1016/j.compositesb.2022.109873
[55]

Chen Q, Liu Z, Xie G, Zhao W, Chen G, et al. 2023. A novel starch-based synergistic flame retardant for the treatment of insulating paper. Starch - Stärke 75:2200247

doi: 10.1002/star.202200247
[56]

Chen S, Li H, Lai X, Zhang S, Zeng X. 2021. Superhydrophobic and phosphorus-nitrogen flame-retardant cotton fabric. Progress in Organic Coatings 159:106446

doi: 10.1016/j.porgcoat.2021.106446
[57]

Shen S, Du J, Guo X, Wen Y, Yang HF. 2015. Adsorption behavior of pH-dependent phytic acid micelles at the copper surface observed by Raman and electrochemistry. Applied Surface Science 327:116−21

doi: 10.1016/j.apsusc.2014.11.155
[58]

Feizollahi E, Mirmahdi RS, Zoghi A, Zijlstra RT, Roopesh M, et al. 2021. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products. Food Research International 143:110284

doi: 10.1016/j.foodres.2021.110284
[59]

Liu X, Zhang Q, Cheng B, Ren Y, Zhang Y, et al. 2018. Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent. Cellulose 25(1):799−811

doi: 10.1007/s10570-017-1550-0
[60]

Sai T, Ran S, Guo Z, Yan H, Zhang Y, et al. 2021. Transparent, highly thermostable and flame retardant polycarbonate enabled by rod-like phosphorous-containing metal complex aggregates. Chemical Engineering Journal 409:128223

doi: 10.1016/j.cej.2020.128223
[61]

Zhang B, Feng Z, Han X, Wang B, Yang S, et al. 2021. Effect of ammonium polyphosphate/cobalt phytate system on flame retardancy and smoke & toxicity suppression of rigid polyurethane foam composites. Journal of Polymer Research 28(11):407

doi: 10.1007/s10965-021-02763-z
[62]

Gong W, Fan M, Luo J, Liang J, Meng X. 2021. Effect of nickel phytate on flame retardancy of intumescent flame retardant polylactic acid. Polymers for Advanced Technologies 32(4):1548−59

doi: 10.1002/pat.5190
[63]

Cheng L, Wu W, Meng W, Xu S, Han H, et al. 2018. Application of metallic phytates to poly (vinyl chloride) as efficient biobased phosphorous flame retardants. Journal of Applied Polymer Science 135(33):46601

doi: 10.1002/app.46601
[64]

Liu W, Shi R, Zhang Z, Yan M, Chen X, et al. 2021. Coordination driven layer-by-layer deposition technology used for fabrication of flame retardant polyamide 66 fabric. Polymers for Advanced Technologies 32(8):3232−41

doi: 10.1002/pat.5335
[65]

Pan Y, Liu L, Zhao H. 2018. Recyclable flame retardant paper made from layer-by-layer assembly of zinc coordinated multi-layered coatings. Cellulose 25(9):5309−21

doi: 10.1007/s10570-018-1922-0
[66]

Khanal S, Lu Y, Dang L, Ali M, Xu S. 2020. Effects of α-zirconium phosphate and zirconium organophosphonate on the thermal, mechanical and flame retardant properties of intumescent flame retardant high density polyethylene composites. RSC Advances 10(51):30990−1002

doi: 10.1039/D0RA04929H
[67]

Xu Y, Li J, Shen R, Wang Z, Hu P, et al. 2021. Experimental study on the synergistic flame retardant effect of bio-based magnesium phytate and rice husk ash on epoxy resins. Journal of Thermal Analysis and Calorimetry 146(1):153−64

doi: 10.1007/s10973-020-10420-8
[68]

Wang L, Wei Y, Deng H, Lyu R, Zhu J, et al. 2021. Synergistic flame retardant effect of barium phytate and intumescent flame retardant for epoxy resin. Polymers 13(17):2900

doi: 10.3390/polym13172900
[69]

Ma D, Zhao P, Li J. 2017. Effects of zinc phytate on flame retardancy and thermal degradation behaviors of intumescent flame-retardant polypropylene. Polymer-Plastics Technology and Engineering 56(11):1167−76

doi: 10.1080/03602559.2016.1255754
[70]

Huang G, Pan YT, Liu L, Song P, Yang R. 2025. Metal-organic frameworks and their derivatives for sustainable flame-retardant polymeric materials. Advanced Nanocomposites 2:1−14

doi: 10.1016/j.adna.2024.10.001
[71]

Yuan J, Pan YT, Lin Y, Zhang W, Du R, et al. 2025. Introduction of phosphorous to metal-organic frameworks for fire-safe polymers: from synthesis to application. Polymer Science & Technology

doi: 10.1021/polymscitech.5c00003
[72]

Rosely CS, Joseph AM, Leuteritz A, Gowd EB. 2020. Phytic acid modified boron nitride nanosheets as sustainable multifunctional nanofillers for enhanced properties of poly (l-lactide). ACS Sustainable Chemistry & Engineering 8(4):1868−78

[73]

Li Z, Yu S, Gong Z, Yao X, Zhang J, et al. 2025. A natural glue paste aminated graphene oxide onto ammonium polyphosphate towards "multiphase integrated" polymer composites: synthesis and application. Sustainable Materials and Technologies 44:e01336

doi: 10.1016/j.susmat.2025.e01336
[74]

Sun X, Miao W, Pan YT, Song P, Gaan S, et al. 2025. Metal-organic frameworks: a solution for greener polymeric materials with low fire hazards. Advanced Sustainable Systems 9(2):2400768

doi: 10.1002/adsu.202400768
[75]

Ye G, Huo S, Wang C, Shi Q, Liu Z, Wang H. 2021. One-step and green synthesis of a bio-based high-efficiency flame retardant for poly (lactic acid). Polymer Degradation and Stability 192:109696

doi: 10.1016/j.polymdegradstab.2021.109696
[76]

Huang Z, Wang Z. 2021. Synthesis of a bio‐based piperazine phytate flame retardant for epoxy resin with improved flame retardancy and smoke suppression. Polymers for Advanced Technologies 32(11):4282−95

doi: 10.1002/pat.5429
[77]

Feng Y, Zhou Y, Li D, He S, Zhang F, et al. 2017. A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric. Carbohydrate Polymers 175:636−44

doi: 10.1016/j.carbpol.2017.06.129
[78]

Cheng XW, Tang RC, Yao F, Yang XH. 2019. Flame retardant coating of wool fabric with phytic acid/polyethyleneimine polyelectrolyte complex. Progress in Organic Coatings 132:336−42

doi: 10.1016/j.porgcoat.2019.04.018
[79]

Yang W, Zhang H, Hu X, Liu Y, Zhang S, et al. 2021. Self-assembled bio-derived microporous nanosheet from phytic acid as efficient intumescent flame retardant for polylactide. Polymer Degradation and Stability 191:109664

doi: 10.1016/j.polymdegradstab.2021.109664
[80]

Yang YX, Haurie L, Zhang J, Zhang XQ, Wang RH, et al. 2020. Effect of bio-based phytate (PA-THAM) on the flame retardant and mechanical properties of polylactide (PLA). Express Polymer Letters 14(8):705−16

doi: 10.3144/expresspolymlett.2020.58
[81]

Yang Y, Wang X, Fei B, Li H, Gu X, et al. 2021. Preparation of phytic acid‐based green intumescent flame retardant and its application in PLA nonwovens. Polymers for Advanced Technologies 32(8):3039−49

doi: 10.1002/pat.5316
[82]

Fang F, Huo S, Shen H, Ran S, Wang H, et al. 2020. A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins. Composites Communications 17:104−8

doi: 10.1016/j.coco.2019.11.011
[83]

Li P, Wang B, Xu YJ, Jiang Z, Dong C, et al. 2019. Ecofriendly flame-retardant cotton fabrics: preparation, flame retardancy, thermal degradation properties, and mechanism. ACS Sustainable Chemistry & Engineering 7(23):19246−56

doi: 10.1021/acssuschemeng.9b05523
[84]

Zhang J, Li Z, Zhang L, Yang Y, Wang DY. 2019. Green synthesis of biomass phytic acid-functionalized UiO-66-NH2 hierarchical hybrids toward fire safety of epoxy resin. ACS Sustainable Chemistry & Engineering 8(2):994−1003

doi: 10.1021/acssuschemeng.9b05658
[85]

Yang P, Wu H, Yang F, Yang J, Wang R, et al. 2021. A novel self-assembled graphene-based flame retardant: synthesis and flame retardant performance in PLA. Polymers 13(23):4216

doi: 10.3390/polym13234216
[86]

Hu Y, Ye Y, Wang J, Zhang T, Jiang S, et al. 2025. Functionalization of chitosan and its application in flame retardants: a review. International Journal of Biological Macromolecules 295:139615

doi: 10.1016/j.ijbiomac.2025.139615
[87]

Shi X, Jiang S, Hu Y, Peng X, Yang H, et al. 2018. Phosphorylated chitosan-cobalt complex: a novel green flame retardant for polylactic acid. Polymers for Advanced Technologies 29(2):860−66

doi: 10.1002/pat.4196
[88]

Zhang M, Cheng Y, Li Z, Li X, Yu L, et al. 2019. Biomass chitosan-induced Fe3O4 functionalized halloysite nanotube composites: preparation, characterization and flame-retardant performance. Nano 14(12):1950154

doi: 10.1142/S1793292019501546
[89]

Hatami M, Sharifi A, Karimi-Maleh H, Agheli H, Karaman C. 2022. Simultaneous improvements in antibacterial and flame retardant properties of PET by use of bio-nanotechnology for fabrication of high performance PET bionanocomposites. Environmental Research 206:112281

doi: 10.1016/j.envres.2021.112281
[90]

Carosio F, Ghanadpour M, Alongi J, Wågberg L. 2018. Layer-by-layer-assembled chitosan/phosphorylated cellulose nanofibrils as a bio-based and flame protecting nano-exoskeleton on PU foams. Carbohydrate Polymers 202:479−87

doi: 10.1016/j.carbpol.2018.09.005
[91]

Lin B, Yuen ACY, Li A, Zhang Y, Chen TBY, et al. 2020. MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions. Journal of Hazardous Materials 381:120952

doi: 10.1016/j.jhazmat.2019.120952
[92]

Lv Z, Hu YT, Guan JP, Tang RC, Chen GQ. 2019. Preparation of a flame retardant, antibacterial, and colored silk fabric with chitosan and vitamin B2 sodium phosphate by electrostatic layer by layer assembly. Materials Letters 241:136−39

doi: 10.1016/j.matlet.2019.01.005
[93]

Sirviö JA, Kantola AM, Komulainen S, Filonenko S. 2021. Aqueous modification of chitosan with itaconic acid to produce strong oxygen barrier film. Biomacromolecules 22(5):2119−28

doi: 10.1021/acs.biomac.1c00216
[94]

Mahaninia MH, Wang Z, Rajabi-Abhari A, Yan N. 2023. Self-healing, flame-retardant, and antimicrobial chitosan-based dynamic covalent hydrogels. International journal of biological macromolecules 252:126422

doi: 10.1016/j.ijbiomac.2023.126422
[95]

Khademibami L, Barnes HM, Jeremic D, Shmulsky R, Bourne K, et al. 2020. Antifungal activity and fire resistantance properties of nano-chitosan treated wood. Bioresources 15 (3): 5926-39

[96]

Solimando X, Kennedy E, David G, Champagne P, Cunningham MF. 2020. Phosphorus-containing polymers synthesised via nitroxide-mediated polymerisation and their grafting on chitosan by grafting to and grafting from approaches. Polymer Chemistry 11(25):4133−42

doi: 10.1039/D0PY00517G
[97]

Zhou Y, Tawiah B, Noor N, Zhang Z, Sun J, et al. 2021. A facile and sustainable approach for simultaneously flame retarded, UV protective and reinforced poly (lactic acid) composites using fully bio-based complexing couples. Composites Part B: Engineering 215:108833

doi: 10.1016/j.compositesb.2021.108833
[98]

Liu X, Sun J, Zhang S, Guo J, Tang W, et al. 2019. Effects of carboxymethyl chitosan microencapsulated melamine polyphosphate on the flame retardancy and water resistance of thermoplastic polyurethane. Polymer Degradation and Stability 160:168−76

doi: 10.1016/j.polymdegradstab.2018.12.019
[99]

Cheng C, Yan J, Lu Y, Ma W, Li C, et al. 2021. Effect of chitosan/lignosulfonate microencapsulated red phosphorus on fire performance of epoxy resin. Thermochimica Acta 700:178931

doi: 10.1016/j.tca.2021.178931
[100]

Lou G, Ma Z, Dai J, Bai Z, Fu S, et al. 2021. Fully biobased surface-functionalized microcrystalline cellulose via green self-assembly toward fire-retardant, strong, and tough epoxy biocomposites. ACS Sustainable Chemistry & Engineering 9(40):13595−605

doi: 10.1021/acssuschemeng.1c04718