[1]

Velusamy S, Roy A, Sundaram S, Mallick TK. 2022. Concern for heavy metal ion water pollution: Their strategic detection and removal opportunities. In Contaminants of Emerging Concerns and Reigning Removal Technologies, eds. Kumar M, Mohapatra S, Acharya K. London: CRC Press. pp. 257−84 doi: 10.1201/9781003247869-13

[2]

Inelova Z, Nesterova S, Yerubayeva G, Zura Y, Seitkadyr K, et al. 2018. Heavy metal accumulation in plants of Atyrau region. Pakistan Journal of Botany 50:2259−63

[3]

Feki K, Tounsi S, Mrabet M, Mhadhbi H, Brini F. 2021. Recent advances in physiological and molecular mechanisms of heavy metal accumulation in plants. Environmental Science and Pollution Research 28:64967−86

doi: 10.1007/s11356-021-16805-y
[4]

Lin L, Liu X, Liang Y, Xu W, Li Y, et al. 2021. Analysis of mineral phases in heavy-metal hazardous waste under the interdisciplinary scope of data science and chemistry. Progress in Chemistry 33(12):2163−72

doi: 10.7536/PC211120
[5]

Xu R, Jian M, Ji Q, Hu C, Tang C, et al. 2020. 2D water-stable zinc-benzimidazole framework nanosheets for ultrafast and selective removal of heavy metals. Chemical engineering journal 382:122658

doi: 10.1016/j.cej.2019.122658
[6]

Li Z, Fu Y, Li Y, Li R, Pei Y, et al. 2025. Constructing multiple sites porous organic polymers for highly efficient and reversible adsorption of triiodide ion from water. Green Energy & Environment In press

doi: 10.1016/j.gee.2025.03.005
[7]

Bakhtiari N, Azizian S, Alshehri SM, Torad NL, Malgras V, et al. 2015. Study on adsorption of copper ion from aqueous solution by MOF-derived nanoporous carbon. Microporous and Mesoporous Materials 217:173−77

doi: 10.1016/j.micromeso.2015.06.022
[8]

Wang L, Zhao X, Zhang J, Xiong Z. 2017. Selective adsorption of Pb(II) over the zinc-based MOFs in aqueous solution-kinetics, isotherms, and the ion exchange mechanism. Environmental Science and Pollution Research 24:14198−206

doi: 10.1007/s11356-017-9002-9
[9]

Rehman Q, Rehman K, Akash MSH. 2021. Heavy metals and neurological disorders: from exposure to preventive interventions. In Environmental contaminants and neurological disorders, eds. Akash MSH, Rehman K. Cham: Springer. pp. 69−87 doi: 10.1007/978-3-030-66376-6_4

[10]

Teschke R. 2024. Copper, iron, cadmium, and arsenic, all generated in the universe: elucidating their environmental impact risk on human health including clinical liver injury. International Journal of Molecular Sciences 25:6662

doi: 10.3390/ijms25126662
[11]

Baig A, Siddique M, Panchal S. 2025. A review of visible-light-active zinc oxide photocatalysts for environmental application. Catalysts 15:100

doi: 10.3390/catal15020100
[12]

Abdullah N, Gohari RJ, Yusof N, Ismail AF, Juhana J, et al. 2016. Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: preparation, characterization and its adsorptive removal of lead (II) from aqueous solution. Chemical Engineering Journal 289:28−37

doi: 10.1016/j.cej.2015.12.081
[13]

Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M. 2017. Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. Journal of Environmental Chemical Engineering 5:2782−99

doi: 10.1016/j.jece.2017.05.029
[14]

Sutariya B, Raval H. 2022. Energy and resource-efficient reverse osmosis system with tunable recovery for brackish water desalination and heavy metal removal. Water and Environment Journal 36:579−89

doi: 10.1111/wej.12788
[15]

Liu C, Wu T, Hsu PC, Xie J, Zhao J, et al. 2019. Direct/alternating current electrochemical method for removing and recovering heavy metal from water using graphene oxide electrode. ACS Nano 13:6431−37

doi: 10.1021/acsnano.8b09301
[16]

Abbas A, Al-Amer AM, Laoui T, Al-Marri MJ, Nasser MS, et al. 2016. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Separation and Purification Technology 157:141−61

doi: 10.1016/j.seppur.2015.11.039
[17]

He Y, Hou YL, Wong YL, Xiao R, Li MQ, et al. 2018. Improving stability against desolvation and mercury removal performance of Zr (IV)–carboxylate frameworks by using bulky sulfur functions. Journal of Materials Chemistry A 6:1648−54

doi: 10.1039/C7TA06118H
[18]

Candia-Lomelí M, Covarrubias-Garcia I, Aizpuru A, Arriaga S. 2023. Preparation and physicochemical characterization of deep eutectic solvents and ionic liquids for the potential absorption and biodegradation of styrene vapors. Journal of Hazardous Materials 441:129835

doi: 10.1016/j.jhazmat.2022.129835
[19]

Fu L, Wang S, Lin G, Zhang L, Liu Q, et al. 2019. Post-modification of UiO-66-NH2 by resorcyl aldehyde for selective removal of Pb(II) in aqueous media. Journal of Cleaner Production 229:470−79

doi: 10.1016/j.jclepro.2019.05.043
[20]

Zeng B, Wang W, He S, Lin G, Du W, et al. 2021. Facile synthesis of zinc-based organic framework for aqueous Hg(II) removal: Adsorption performance and mechanism. Nano Materials Science 3:429−39

doi: 10.1016/j.nanoms.2021.06.005
[21]

Rao GB, Prasad MK, Murthy CV. 2015. Cobalt(II) removal from aqueous solutions by adsorption onto molecular sieves. International Journal of Chemical Sciences 13:1893−910

[22]

Sah RP, Choudhury B, Das RK. 2015. A review on adsorption cooling systems with silica gel and carbon as adsorbents. Renewable and Sustainable Energy Reviews 45:123−34

doi: 10.1016/j.rser.2015.01.039
[23]

Wang N, Ouyang XK, Yang LY, Omer AM. 2017. Fabrication of a magnetic cellulose nanocrystal/metal–organic framework composite for removal of Pb(II) from water. ACS Sustainable Chemistry & Engineering 5:10447−58

doi: 10.1021/acssuschemeng.7b02472
[24]

Zandi-Mehri E, Taghavi L, Moeinpour F, Khosravi I, Ghasemi S. 2022. Designing of hydroxyl terminated triazine-based dendritic polymer/halloysite nanotube as an efficient nano-adsorbent for the rapid removal of Pb(II) from aqueous media. Journal of Molecular Liquids 360:119407

doi: 10.1016/j.molliq.2022.119407
[25]

Wang Y, Ye G, Chen H, Hu X, Niu Z, et al. 2015. Functionalized metal–organic framework as a new platform for efficient and selective removal of cadmium (II) from aqueous solution. Journal of Materials Chemistry A 3:15292−98

doi: 10.1039/C5TA03201F
[26]

Hayat A, Rauf S, Al Alwan B, El Jery A, Almuqati N, et al. 2024. Recent advance in MOFs and MOF-based composites: synthesis, properties, and applications. Materials Today Energy 41:101542

doi: 10.1016/j.mtener.2024.101542
[27]

Wang C, Xia H, Xu Y, Lu Z, Pei Q, et al. 2025. Efficient recovery of valuable metals from low-grade zinc residue by ultrasonic strengthening. Chemical Engineering and Processing - Process Intensification 211:110240

doi: 10.1016/j.cep.2025.110240
[28]

Zhang Q, Jiang S, Lv T, Peng Y, Pang H. 2023. Application of Conductive MOF in Zinc-Based Batteries. Advanced Materials 35:2305532

doi: 10.1002/adma.202305532
[29]

Li C, Wei H, Hua R, He X, Lu J, et al. 2025. 3D Cu-BTC anchored on 2D MXene nanosheets using surface control approach for urea adsorption to achieve the regeneration of dialysate. Separation and Purification Technology 373:133594

doi: 10.1016/j.seppur.2025.133594
[30]

Zhao J, Liu J, Li N, Wang W, Nan J, et al. 2016. Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: adsorption behavior and process study. Chemical Engineering Journal 304:737−46

doi: 10.1016/j.cej.2016.07.003
[31]

Xu GR, An ZH, Xu K, Liu Q, Das R, et al. 2021. Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications. Coordination Chemistry Reviews 427:213554

doi: 10.1016/j.ccr.2020.213554
[32]

Wang D, Ying Y, Cai L, Cheng H, Giannakis S, et al. 2025. Acid-engineered UiO-66 (Ce): from the limitations of concealed MOF sites to catalytic excellence for rapid atrazine degradation. Chemical Engineering Journal 516:163890

doi: 10.1016/j.cej.2025.163890
[33]

Sun Z, Tian C, Yang T, Fu J, Xu H, et al. 2022. A MOF-based trap with strong affinity toward low-concentration heavy metal ions. Separation and Purification Technology 301:121946

doi: 10.1016/j.seppur.2022.121946
[34]

Huang Z, Zhao M, Wang C, Wang S, Dai L, et al. 2020. Preparation of a novel Zn(II)-imidazole framework as an efficient and regenerative adsorbent for Pb, Hg, and As ion removal from water. ACS Applied Materials & Interfaces 12:41294−302

doi: 10.1021/acsami.0c10298
[35]

Fang G, Zhou J, Cai Y, Liu S, Tan X, et al. 2017. Metal–organic framework-templated two-dimensional hybrid bimetallic metal oxides with enhanced lithium/sodium storage capability. Journal of Materials Chemistry A 5:13983−93

doi: 10.1039/C7TA01961K
[36]

Zhou L, Li N, Owens G, Chen Z. 2019. Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8. Chemical Engineering Journal 362:628−37

doi: 10.1016/j.cej.2019.01.068
[37]

Zhang Y, Jia Y, Li M, Hou L. 2018. Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Scientific reports 8:9597

doi: 10.1038/s41598-018-28015-7
[38]

Ahmad K, Shah HUR, Ashfaq M, Ahmad Shah SS, Hussain E, et al. 2021. Effect of metal atom in zeolitic imidazolate frameworks (ZIF-8 & 67) for removal of Pb2+ & Hg2+ from water. Food and chemical toxicology 149:112008

doi: 10.1016/j.fct.2021.112008
[39]

Schelling M, Kim M, Otal E, Aguirre M, Hinestroza JP. 2020. Synthesis of a zinc–imidazole metal–organic framework (ZIF-8) using ZnO rods grown on cotton fabrics as precursors: arsenate absorption studies. Cellulose 27:6399−410

doi: 10.1007/s10570-020-03216-4
[40]

Kosmulski M. 2020. The pH dependent surface charging and points of zero charge. VIII. Update. Advances in Colloid and Interface Science 275:102064

doi: 10.1016/j.cis.2019.102064
[41]

Younes HA, Taha M, Mahmoud R, Mahmoud HM, Abdelhameed RM. 2022. High adsorption of sodium diclofenac on post-synthetic modified zirconium-based metal-organic frameworks: Experimental and theoretical studies. Journal of Colloid and Interface Science 607:334−46

doi: 10.1016/j.jcis.2021.08.158
[42]

Kim G, Yea Y, Njaramba LK, Yoon Y, Kim S, et al. 2022. Synthesis, performance, and mechanisms of strontium ferrite-incorporated zeolite imidazole framework (ZIF-8) for the simultaneous removal of Pb(II) and tetracycline. Environmental Research 212:113419

doi: 10.1016/j.envres.2022.113419
[43]

Cruz-Lopes LP, Macena M, Esteves B, Guiné RPF. 2021. Ideal pH for the adsorption of metal ions Cr6+, Ni2+, Pb2+ in aqueous solution with different adsorbent materials. Open Agriculture 6:115−23

doi: 10.1515/opag-2021-0225
[44]

Zhang Y, Kang X, Guo P, Tan H, Zhang SH. 2022. Studies on the removal of phosphate in water through adsorption using a novel Zn-MOF and its derived materials. Arabian Journal of Chemistry 15:103955

doi: 10.1016/j.arabjc.2022.103955
[45]

Ji C, Wu D, Lu J, Shan C, Ren Y, et al. 2021. Temperature regulated adsorption and desorption of heavy metals to A-MIL-121: Mechanisms and the role of exchangeable protons. Water Research 189:116599

doi: 10.1016/j.watres.2020.116599
[46]

Efome JE, Rana D, Matsuura T, Lan CQ. 2018. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS applied materials & interfaces 10:18619−29

doi: 10.1021/acsami.8b01454
[47]

Roy D, Neogi S, De S. 2021. Adsorptive removal of heavy metals from battery industry effluent using MOF incorporated polymeric beads: a combined experimental and modeling approach. Journal of Hazardous Materials 403:123624

doi: 10.1016/j.jhazmat.2020.123624
[48]

Siddique M, Saeed M, Ilyas M, Gulab H. 2017. Pd/ZrO2: an efficient catalyst for liquid phase oxidation of toluene in solvent free conditions. International Journal of Chemical Reactor Engineering 15:20160093

doi: 10.1515/ijcre-2016-0093
[49]

Khosravani M, Dehghani Ghanatghestani M, Moeinpour F, Parvaresh H. 2024. Efficient lead removal from aqueous solutions using a new sulfonated covalent organic framework: synthesis, characterization, and adsorption performance. Arabian Journal of Chemistry 17:105429

doi: 10.1016/j.arabjc.2023.105429
[50]

Ebelegi AN, Ayawei N, Wankasi D. 2020. Interpretation of adsorption thermodynamics and kinetics. Open Journal of Physical Chemistry 10:166−82

doi: 10.4236/ojpc.2020.103010
[51]

Kowanga KD, Gatebe E, Mauti GO, Mauti EM. 2016. Kinetic, sorption isotherms, pseudo-first-order model and pseudo-second-order model studies of Cu(II) and Pb(II) using defatted Moringa oleifera seed powder. The Journal of Phytopharmacology 5:71−78

doi: 10.31254/phyto.2016.5206
[52]

Wu FC, Tseng RL, Juang RS. 2009. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chemical engineering journal 153:1−8

doi: 10.1016/j.cej.2009.04.042
[53]

Das A, Bar N, Das SK. 2020. Pb(II) adsorption from aqueous solution by nutshells, green adsorbent: adsorption studies, regeneration studies, scale-up design, its effect on biological indicator and MLR modeling. Journal of Colloid and Interface Science 580:245−55

doi: 10.1016/j.jcis.2020.07.017
[54]

Nag S, Bhowmik S, Bar N, Das SK. 2024. Biosorption of Pb(II) from aqueous solution by citrus reticulate: adsorption studies, and modeling. International Journal of Phytoremediation 26:1996−2009

doi: 10.1080/15226514.2024.2372440
[55]

Sarkar S, Bar N, Das SK. 2021. Cr(VI) and Cu(II) removal from aqueous solution in fixed bed column using rice bran; experimental, statistical and GA modelling. Journal of the Indian Chemical Society 98:100216

doi: 10.1016/j.jics.2021.100216
[56]

Bar N, Mitra T, Das SK. 2021. Biosorption of Cu(II) ions from industrial effluents by rice husk: experiment, statistical, and ANN modeling. Journal of Environmental Engineering and Landscape Management 29:441−48

doi: 10.3846/jeelm.2021.14386
[57]

Das A, Bar N, Das SK. 2023. Adsorptive removal of Pb(II) ion on Arachis hypogaea's shell: batch experiments, statistical, and GA modeling. International journal of Environmental Science and Technology 20:537−50

doi: 10.1007/s13762-021-03842-w
[58]

Bhattacharya S, Bar N, Rajbansi B, Das SK. 2023. Synthesis of chitosan-nTiO2 nanocomposite, application in adsorptive removal of Cu(II)—adsorption and desorption study, mechanism, scale-up design, statistical, and genetic algorithm modeling. Applied Organometallic Chemistry 37:e7094

doi: 10.1002/aoc.7094