[1]

Esmail S, Manolson MF. 2021. Advances in understanding N-glycosylation structure, function, and regulation in health and disease. European Journal of Cell Biology 100:151186

doi: 10.1016/j.ejcb.2021.151186
[2]

Wang T, Liu L, Voglmeir J. 2022. mAbs N-glycosylation: implications for biotechnology and analytics. Carbohydrate Research 514:108541

doi: 10.1016/j.carres.2022.108541
[3]

Mao H, Li S, Yin B, Lin X, Guo J, et al. 2022. The mechanism of probiotic action of human milk N-glycome towards B. infantis ATCC 15697 and identification of the principal functional components. Food Chemistry 384:132532

doi: 10.1016/j.foodchem.2022.132532
[4]

Mu C, Cai Z, Bian G, Du Y, Ma S, Su Y, et al. 2019. New insights into porcine milk N-glycome and the potential relation with offspring gut microbiome. Journal of Proteome Research 18:1114−24

doi: 10.1021/acs.jproteome.8b00789
[5]

Zhang JX, Lyu YS, Voglmeir J, Liu L. 2024. Differential impact of glycoprotein glycosylation on Akkermansia muciniphila growth dynamics. Food Materials Research 4:e022

doi: 10.48130/fmr-0024-0013
[6]

Tretter V, Altmann F, März L. 1991. Peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha 1→3 to the asparagine-linked N-acetylglucosamine residue. European Journal of Biochemistry 199:647−52

doi: 10.1111/j.1432-1033.1991.tb16166.x
[7]

Wang T, Voglmeir J. 2014. PNGases as valuable tools in glycoprotein analysis. Protein and Peptide Letters 21:976−85

doi: 10.2174/0929866521666140626111237
[8]

Altmann F, Paschinger K, Dalik T, Vorauer K. 1998. Characterisation of peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase A and its N-glycans. European Journal of Biochemistry 252:118−23

doi: 10.1046/j.1432-1327.1998.2520118.x
[9]

Wang T, Cai ZP, Gu XQ, Ma HY, Du YM, et al. 2014. Discovery and characterization of a novel extremely acidic bacterial N-glycanase with combined advantages of PNGase F and A. Bioscience Reports 34(6):e00149

doi: 10.1042/BSR20140148
[10]

Guo RR, Comamala G, Yang HH, Gramlich M, Du YM, et al. 2020. Discovery of highly active recombinant PNGase H+ variants through the rational exploration of unstudied acidobacterial genomes. Frontiers in Bioengineering and Biotechnology 8:741

doi: 10.3389/fbioe.2020.00741
[11]

Wang T, Hu XC, Cai ZP, Voglmeir J, Liu L. 2017. Qualitative and quantitative analysis of carbohydrate modification on glycoproteins from seeds of Ginkgo biloba. Journal of Agricultural and Food Chemistry 65:7669−79

doi: 10.1021/acs.jafc.7b01690
[12]

Du YM, Zheng SL, Liu L, Voglmeir J, Yedid G. 2018. Analysis of N-glycans from Raphanus sativus cultivars using PNGase H. Journal of Visualized Experiments 136:e57979

doi: 10.3791/57979
[13]

Veličković D, Liao YC, Thibert S, Veličković M, Anderton C, et al. 2022. Spatial mapping of plant N-glycosylation cellular heterogeneity inside soybean root nodules provided insights into legume-rhizobia symbiosis. Frontiers in Plant Science 13:869281

doi: 10.3389/fpls.2022.869281
[14]

Gramlich M, Maier S, Kaiser PD, Traenkle B, Wagner TR, et al. 2022. A novel PNGase Rc for improved protein N-deglycosylation in bioanalytics and hydrogen-deuterium exchange coupled with mass spectrometry epitope mapping under challenging conditions. Analytical Chemistry 94:9863−71

doi: 10.1021/acs.analchem.2c01748
[15]

Guo RR, Zhang TC, Lambert TOT, Wang T, Voglmeir J, et al. 2022. PNGase H+ variant from Rudaea cellulosilytica with improved deglycosylation efficiency for rapid analysis of eukaryotic N-glycans and hydrogen deuterium exchange mass spectrometry analysis of glycoproteins. Rapid Communications in Mass Spectrometry 36:e9376

doi: 10.1002/rcm.9376
[16]

Zhao W, Zhong Y, Yuan H, Wang J, Zheng H, et al. 2010. Complete genome sequence of the rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its genetic characteristics in phylogeny and metabolism. Cell Research 20:1096−108

doi: 10.1038/cr.2010.87
[17]

Yu YY, Zhang SY, Sun JH, Li YY, Zhang YY, et al. 2024. Biocatalytic β-glucosylation/β-galactosylation of rebaudioside C by glycosynthases. Food Materials Research 4:e008

doi: 10.48130/fmr-0023-0043
[18]

Hu ZX, Lyu YS, Song HB, Liu L, Voglmeir J. 2024. Galactosylation of glycoconjugates using Pacific oyster β-1,3-galactosyltransferases. Carbohydrate Research 544:109254

doi: 10.1016/j.carres.2024.109254
[19]

Damerell D, Ceroni A, Maass K, Ranzinger R, Dell A, et al. 2012. The GlycanBuilder and GlycoWorkbench glycoinformatics tools: updates and new developments. Biological Chemistry 393:1357−62

doi: 10.1515/hsz-2012-0135
[20]

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583−89

doi: 10.1038/s41586-021-03819-2
[21]

Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, et al. 2023. UCSF ChimeraX: tools for structure building and analysis. Protein Science 32:e4792

doi: 10.1002/pro.4792
[22]

Stivala A, Wybrow M, Wirth A, Whisstock JC, Stuckey PJ. 2011. Automatic generation of protein structure cartoons with Pro-origami. Bioinformatics 27:3315−16

doi: 10.1093/bioinformatics/btr575
[23]

Pandey VK, Sharma R, Prajapati GK, Mohanta TK, Mishra AK. 2022. N-glycosylation, a leading role in viral infection and immunity development. Molecular Biology Reports 49:8109−20

doi: 10.1007/s11033-022-07359-4