[1]

Amiri H, Banakar MH, Gavyar PHH. 2024. Polyamines: new plant growth regulators promoting salt stress tolerance in plants. Journal of Plant Growth Regulation 43:4923−40

doi: 10.1007/s00344-024-11447-z
[2]

Gruda NS, Dong J, Li X. 2024. From salinity to nutrient-rich vegetables: strategies for quality enhancement in protected cultivation. Critical Reviews in Plant Sciences 43:327−47

doi: 10.1080/07352689.2024.2351678
[3]

Rasheed Y, Khalid F, Ashraf H, Asif K, Maqsood MF, et al. 2024. Enhancing plant stress resilience with osmolytes and nanoparticles. Journal of Soil Science and Plant Nutrition 24:1871−906

doi: 10.1007/s42729-024-01821-x
[4]

Singh S, Praveen A, Dudha N, Bhadrecha P. 2024. Integrating physiological and multi-omics methods to elucidate heat stress tolerance for sustainable rice production. Physiology and Molecular Biology of Plants 30:1185−208

doi: 10.1007/s12298-024-01480-3
[5]

Chaffai R, Ganesan M, Cherif A. 2024. Plant response and tolerance to environmental stresses. In Plant Adaptation to Abiotic Stress: From Signaling Pathways and Microbiomes to Molecular Mechanisms. Singapore: Springer. pp. 31–47 doi: 10.1007/978-981-97-0672-3_2

[6]

Baumgart LA, Morales-Cruz A, Greenblum SI, Wang P, Zhang Y, et al. 2024. An atlas of conserved transcription factor binding sites reveals the cell type-resolved gene regulatory landscape of flowering plants. bioRxiv Preprint

doi: 10.1101/2024.10.08.617089
[7]

Patwa N, Pandey V, Gupta OP, Yadav A, Meena MR, et al. 2024. Unravelling wheat genotypic responses: insights into salinity stress tolerance in relation to oxidative stress, antioxidant mechanisms, osmolyte accumulation and grain quality parameters. BMC Plant Biology 24:875

doi: 10.1186/s12870-024-05508-4
[8]

Seifikalhor M, Aliniaeifard S, Hassani B, Niknam V, Lastochkina O. 2019. Diverse role of γ-aminobutyric acid in dynamic plant cell responses. Plant Cell Reports 38:847−67

doi: 10.1007/s00299-019-02396-z
[9]

Navarro A, Bañón S, Conejero W, Sánchez-Blanco MJ. 2008. Ornamental characters, ion accumulation and water status in Arbutus unedo seedlings irrigated with saline water and subsequent relief and transplanting. Environmental and Experimental Botany 62:364−70

doi: 10.1016/j.envexpbot.2007.10.010
[10]

Cirillo C, De Micco V, Arena C, Carillo P, Pannico A, et al. 2019. Biochemical, physiological and anatomical mechanisms of adaptation of Callistemon citrinus and Viburnum lucidum to NaCl and CaCl2 salinization. Frontiers in Plant Science 10:742

doi: 10.3389/fpls.2019.00742
[11]

Shoket H. 2024. Targeting compatible solutes for abiotic stress tolerance in plants. In Plant Secondary Metabolites and Abiotic Stress, eds Nikalje GC, Shahnawaz M, Parihar J, Qazi HA, Patil VN, et al. US: Scrivener Publishing LLC. pp. 105−30 doi: 10.1002/9781394186457.ch4

[12]

Joshi S, Nath J, Singh AK, Pareek A, Joshi R. 2022. Ion transporters and their regulatory signal transduction mechanisms for salinity tolerance in plants. Physiologia Plantarum 174:e13702

doi: 10.1111/ppl.13702
[13]

Abobatta WF. 2020. Plant responses and tolerance to extreme salinity: learning from halophyte tolerance to extreme salinity. In Salt and Drought Stress Tolerance in Plants: Signaling Networks and Adaptive Mechanisms, eds Hasanuzzaman M, Tanveer M. Cham: Springer. pp. 177–210 doi: 10.1007/978-3-030-40277-8_7

[14]

Rius-Garcia X, Videgain-Marco M, Casanova-Gascón J, Acuña-Rello L, Martín-Ramos P. 2025. Comparative evaluation of salt tolerance in four self-rooted hazelnut (Corylus avellana L. and Corylus americana Walter) cultivars. Agronomy 15:148

doi: 10.3390/agronomy15010148
[15]

Ahmed M, Marrez DA, Rizk R, Zedan M, Abdul-Hamid D, et al. 2024. The influence of zinc oxide nanoparticles and salt stress on the morphological and some biochemical characteristics of Solanum lycopersicum L. plants. Plants 13:1418

doi: 10.3390/plants13101418
[16]

Shabala S, Chen G, Chen ZH, Pottosin I. 2020. The energy cost of the tonoplast futile sodium leak. New Phytologist 225:1105−10

doi: 10.1111/nph.15758
[17]

Navyashree R. 2023. Water relations and uptake in crops. Crop Physiology: A Collaborative Insights. pp. 46−85

[18]

Barbosa JP, Martins Dala Paula B, Souza PA. 2024. Polyamines and their precursor, putrescine, produced by lactic acid bacteria isolated from fermented foods and their concept as metabiotics. Food Reviews International 40:3555−71

doi: 10.1080/87559129.2024.2366845
[19]

Choudhary S, Wani KI, Naeem M, Khan MMA, Aftab T. 2023. Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: polyamines and nitric oxide crosstalk. Journal of Plant Growth Regulation 42:539−53

doi: 10.1007/s00344-022-10584-7
[20]

Fariduddin Q, Mir BA, Yusuf M, Ahmad A. 2013. Comparative roles of brassinosteroids and polyamines in salt stress tolerance. Acta Physiologiae Plantarum 35:2037−53

doi: 10.1007/s11738-013-1263-4
[21]

Romanenko KO, Babenko LM, Kosakivska IV. 2024. Amino acids in regulation of abiotic stress tolerance in cereal crops: a review. Cereal Research Communications 52:333−56

doi: 10.1007/s42976-023-00418-x
[22]

Abdelkader M, Voronina L, Shelepova O, Puchkov M, Loktionova E, et al. 2023. Monitoring role of exogenous amino acids on the proteinogenic and ionic responses of lettuce plants under salinity stress conditions. Horticulturae 9:626

doi: 10.3390/horticulturae9060626
[23]

Shahbaz M, Ashraf M. 2013. Improving salinity tolerance in cereals. Critical Reviews in Plant Sciences 32:237−49

doi: 10.1080/07352689.2013.758544
[24]

Shakhsi-Dastgahian F, Valizadeh J, inali A, Cheniany M. 2022. Exogenous arginine treatment additively enhances growth and tolerance of Salicornia europaea seedlings under salinity. Acta Botanica Croatica 81:213−20

doi: 10.37427/botcro-2022-019
[25]

Al-Khayri JM, Abdel-Haleem M, Khedr EH. 2024. Harnessing GABA pathways to improve plant resilience against salt stress. Horticulturae 10:1296

doi: 10.3390/horticulturae10121296
[26]

Wu X, Jia Q, Ji S, Gong B, Li J, et al. 2020. Gamma-aminobutyric acid (GABA) alleviates salt damage in tomato by modulating Na+ uptake, the GAD gene, amino acid synthesis and reactive oxygen species metabolism. BMC Plant Biology 20:465

doi: 10.1186/s12870-020-02669-w
[27]

Hao S, Wang Y, Yan Y, Liu Y, Wang J, et al. 2021. A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae 7:132

doi: 10.3390/horticulturae7060132
[28]

Chen F, Fang P, Zeng W, Ding Y, Zhuang Z, et al. 2020. Comparing transcriptome expression profiles to reveal the mechanisms of salt tolerance and exogenous glycine betaine mitigation in maize seedlings. PLoS One 15:e0233616

doi: 10.1371/journal.pone.0233616
[29]

Massange-Sánchez JA, Sánchez-Hernández CV, Hernández-Herrera RM, Palmeros-Suárez PA. 2021. The biochemical mechanisms of salt tolerance in plants. In Plant Stress Physiology-Perspectives in Agriculture London: IntechOpen doi: 10.5772/intechopen.101048

[30]

Sofy MR, Elhawat N, Alshaal T. 2020. Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotoxicology and Environmental Safety 200:110732

doi: 10.1016/j.ecoenv.2020.110732
[31]

Dustgeer Z, Seleiman MF, Khan I, Chattha MU, Ali EF, et al. 2021. Glycine-betaine induced salinity tolerance in maize by regulating the physiological attributes, antioxidant defense system and ionic homeostasis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49:12248

doi: 10.15835/nbha49112248
[32]

Saddhe AA, Manuka R, Penna S. 2021. Plant sugars: homeostasis and transport under abiotic stress in plants. Physiologia Plantarum 171:739−55

doi: 10.1111/ppl.13283
[33]

Sarkar AK, Sadhukhan S. 2022. Imperative role of trehalose metabolism and trehalose-6-phosphate signaling on salt stress responses in plants. Physiologia Plantarum 174:e13647

doi: 10.1111/ppl.13647
[34]

Yuan G, Sun D, An G, Li W, Si W, et al. 2022. Transcriptomic and metabolomic analysis of the effects of exogenous trehalose on salt tolerance in watermelon (Citrullus lanatus). Cells 11:2338

doi: 10.3390/cells11152338
[35]

Nawaz M, Hassan MU, Chattha MU, Mahmood A, Shah AN, et al. 2022. Trehalose: a promising osmo-protectant against salinity stress—physiological and molecular mechanisms and future prospective. Molecular Biology Reports 49:11255−71

doi: 10.1007/s11033-022-07681-x
[36]

Zhang G, Wang Y, Wu K, Zhang Q, Feng Y, et al. 2021. Exogenous application of chitosan alleviate salinity stress in lettuce (Lactuca sativa L.). Horticulturae 7:342

doi: 10.3390/horticulturae7100342
[37]

Hu L, Zhou K, Li Y, Chen X, Liu B, et al. 2018. Exogenous myo-inositol alleviates salinity-induced stress in Malus hupehensis Rehd. Plant Physiology and Biochemistry 133:116−26

doi: 10.1016/j.plaphy.2018.10.037
[38]

El Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A. 2020. How does proline treatment promote salt stress tolerance during crop plant development? Frontiers in Plant Science 11:1127

doi: 10.3389/fpls.2020.01127
[39]

Akhter MS, Noreen S, Ummara U, Aqeel M, Saleem N, et al. 2022. Silicon-induced mitigation of NaCl stress in barley (Hordeum vulgare L.), associated with enhanced enzymatic and non-enzymatic antioxidant activities. Plants 11:2379

doi: 10.3390/plants11182379
[40]

Fujita M, Hasanuzzaman M. 2022. Approaches to enhancing antioxidant defense in plants. Antioxidants 11:925

doi: 10.3390/antiox11050925
[41]

Di Ferdinando M, Brunetti C, Fini A, Tattini M. 2012. Flavonoids as antioxidants in plants under abiotic stresses. Abiotic Stress Responses in Plants, eds Ahmad P, Prasad M. New York, NY: Springer. pp. 159–79 doi: 10.1007/978-1-4614-0634-1_9

[42]

Mierziak J, Kostyn K, Kulma A. 2014. Flavonoids as important molecules of plant interactions with the environment. Molecules 19:16240−65

doi: 10.3390/molecules191016240
[43]

Gest N, Gautier H, Stevens R. 2013. Ascorbate as seen through plant evolution: the rise of a successful molecule? Journal of Experimental Botany 64:33−53

doi: 10.1093/jxb/ers297
[44]

Ghosh UK, Hossain MS, Islam MN, Khan MAR. 2022. Role of tocopherol in conferring abiotic stress tolerance in plants. In Antioxidant Defense in Plants, eds Aftab T, Hakeem KR. Singapore: Springer. pp. 215–33 doi: 10.1007/978-981-16-7981-0_10

[45]

Semida WM, Abd El-Mageed TA, Howladar SM, Rady MM. 2016. Foliar-applied α-tocopherol enhances salt-tolerance in onion plants by improving antioxidant defence system. Australian Journal of Crop Science 10:1030−39

doi: 10.21475/ajcs.2016.10.07.p7712
[46]

Lalarukh I, Shahbaz M. 2020. Response of antioxidants and lipid peroxidation to exogenous application of alpha-tocopherol in sunflower (Helianthus annuus L.) under salt stress. Pakistan Journal of Botany 52:75−83

doi: 10.30848/pjb2020-1(41)
[47]

Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V. 2020. The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview. Frontiers in Plant Science 11:552969

doi: 10.3389/fpls.2020.552969
[48]

Uarrota VG, Stefen DLV, Leolato LS, Gindri DM, Nerling D. 2018. Revisiting carotenoids and their role in plant stress responses: from biosynthesis to plant signaling mechanisms during stress. In Antioxidants and Antioxidant Enzymes in Higher Plants, eds Gupta D, Palma J, Corpas F. Cham: Springer. pp. 207–32 doi: 10.1007/978-3-319-75088-0_10

[49]

Swapnil P, Meena M, Singh SK, Dhuldhaj UP, Marwal A. 2021. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Current Plant Biology 26:100203

doi: 10.1016/j.cpb.2021.100203
[50]

Li C, Ji J, Wang G, Li Z, Wang Y, et al. 2020. Over-expression of LcPDS, LcZDS, and LcCRTISO, genes from wolfberry for carotenoid biosynthesis, enhanced carotenoid accumulation, and salt tolerance in tobacco. Frontiers in Plant Science 11:119

doi: 10.3389/fpls.2020.00119
[51]

Irato P, Santovito G. 2021. Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants 10:579

doi: 10.3390/antiox10040579
[52]

Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S. 2020. Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiology and Biochemistry 156:64−77

doi: 10.1016/j.plaphy.2020.08.042
[53]

Huang Q, Farooq MA, Hannan F, Chen W, Ayyaz A, et al. 2022. Endogenous nitric oxide contributes to chloride and sulphate salinity tolerance by modulation of ion transporter expression and reestablishment of redox balance in Brassica napus cultivars. Environmental and Experimental Botany 194:104734

doi: 10.1016/j.envexpbot.2021.104734
[54]

Dave A, Agarwal P, Agarwal PK. 2022. Mechanism of high affinity potassium transporter (HKT) towards improved crop productivity in saline agricultural lands. 3 Biotech 12:51

doi: 10.1007/s13205-021-03092-0
[55]

Islam F, Wang J, Farooq MA, Yang C, Jan M, et al. 2019. Rice responses and tolerance to salt stress: deciphering the physiological and molecular mechanisms of salinity adaptation. In Advances in Rice Research for Abiotic Stress Tolerance, eds Hasanuzzaman M, Fujita M, Nahar K, Biswas JK. UK: Woodhead Publishing. pp. 791−819 doi: 10.1016/B978-0-12-814332-2.00040-X

[56]

Parwez R, Aftab T, Gill SS, Naeem M. 2022. Abscisic acid signaling and crosstalk with phytohormones in regulation of environmental stress responses. Environmental and Experimental Botany 199:104885

doi: 10.1016/j.envexpbot.2022.104885
[57]

Rao YR, Ansari MW, Sahoo RK, Wattal RK, Tuteja N, et al. 2021. Salicylic acid modulates ACS, NHX1, sos1 and HKT1; 2 expression to regulate ethylene overproduction and Na+ ions toxicity that leads to improved physiological status and enhanced salinity stress tolerance in tomato plants cv. Pusa Ruby. Plant Signaling & Behavior 16:1950888

doi: 10.1080/15592324.2021.1950888
[58]

Islam F, Xie Y, Farooq MA, Wang J, Yang C, et al. 2018. Salinity reduces 2,4-D efficacy in Echinochloa crusgalli by affecting redox balance, nutrient acquisition, and hormonal regulation. Protoplasma 255:785−802

doi: 10.1007/s00709-017-1159-z
[59]

Liu J, Wu Y, Dong G, Zhu G, Zhou G. 2023. Progress of research on the physiology and molecular regulation of sorghum growth under salt stress by gibberellin. International Journal of Molecular Sciences 24:6777

doi: 10.3390/ijms24076777
[60]

Ali A, Petrov V, Yun DJ, Gechev T. 2023. Revisiting plant salt tolerance: novel components of the SOS pathway. Trends in Plant Science 28:1060−69

doi: 10.1016/j.tplants.2023.04.003
[61]

Yang Y, Guo Y. 2018. Unraveling salt stress signaling in plants. Journal of Integrative Plant Biology 60:796−804

doi: 10.1111/jipb.12689
[62]

Yang Y, Guo Y. 2018. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist 217:523−39

doi: 10.1111/nph.14920
[63]

Atif RM, Shahid L, Waqas M, Ali B, Rashid MAR, et al. 2019. Insights on calcium-dependent protein kinases (CPKs) signaling for abiotic stress tolerance in plants. International Journal of Molecular Sciences 20:5298

doi: 10.3390/ijms20215298
[64]

Kumar K, Raina SK, Sultan SM. 2020. Arabidopsis MAPK signaling pathways and their cross talks in abiotic stress response. Journal of Plant Biochemistry and Biotechnology 29:700−14

doi: 10.1007/s13562-020-00596-3
[65]

Li S, Han X, Lu Z, Qiu W, Yu M, et al. 2022. MAPK cascades and transcriptional factors: regulation of heavy metal tolerance in plants. International Journal of Molecular Sciences 23:4463

doi: 10.3390/ijms23084463
[66]

Mohanta TK, Bashir T, Hashem A, Abd_Allah EF, Khan AL, et al. 2018. Early events in plant abiotic stress signaling: interplay between calcium, reactive oxygen species and phytohormones. Journal of Plant Growth Regulation 37:1033−49

doi: 10.1007/s00344-018-9833-8
[67]

Bisht D, Mishra S, Bihani SC, Seth T, Srivastava AK, et al. 2025. Salt stress tolerance and calcium signalling components: where we stand and how far we can go. Journal of Plant Growth Regulation 44:1429−47

doi: 10.1007/s00344-024-11235-9
[68]

Shukla D, Waigel S, Rouchka EC, Sandhu G, Trivedi PK, et al. 2021. Genome-wide expression analysis reveals contrasting regulation of phosphate starvation response (PSR) in root and shoot of Arabidopsis and its association with biotic stress. Environmental and Experimental Botany 188:104483

doi: 10.1016/j.envexpbot.2021.104483
[69]

Huang J, Liu F, Chao D, Xin B, Liu K, et al. 2022. The WRKY transcription factor OsWRKY54 is involved in salt tolerance in rice. International Journal of Molecular Sciences 23:11999

doi: 10.3390/ijms231911999
[70]

Peng W, Li W, Song N, Tang Z, Liu J, et al. 2021. Genome-wide characterization, evolution, and expression profile analysis of GATA transcription factors in Brachypodium distachyon. International Journal of Molecular Sciences 22:2026

doi: 10.3390/ijms22042026
[71]

Nutan KK, Singla-Pareek SL, Pareek A. 2020. The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice. Journal of Experimental Botany 71:684−98

doi: 10.1093/jxb/erz368
[72]

Zhu H, Zhai H, He S, Zhang H, Gao S, et al. 2022. A novel sweetpotato GATA transcription factor, IbGATA24, interacting with IbCOP9-5a positively regulates drought and salt tolerance. Environmental and Experimental Botany 194:104735

doi: 10.1016/j.envexpbot.2021.104735
[73]

Zhou Q, Priyadarshani SVGN, Qin R, Cheng H, Luo T, et al. 2024. AcWRKY28 mediated activation of AcCPK genes confers salt tolerance in pineapple (Ananas comosus). Horticultural Plant Journal 10:398−412

doi: 10.1016/j.hpj.2023.05.002
[74]

Lu M, Ying S, Zhang DF, Shi YS, Song YC, et al. 2012. A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Reports 31:1701−11

doi: 10.1007/s00299-012-1284-2
[75]

Lu M, Sun QP, Zhang DF, Wang TY, Pan JB. 2015. Identification of 7 stress-related NAC transcription factor members in maize (Zea mays L.) and characterization of the expression pattern of these genes. Biochemical and Biophysical Research Communications 462:144−50

doi: 10.1016/j.bbrc.2015.04.113
[76]

Yang W, Liu X, Yu S, Liu J, Jiang L, et al. 2024. The maize ATP-binding cassette (ABC) transporter ZmMRPA6 confers cold and salt stress tolerance in plants. Plant Cell Reports 43:13

doi: 10.1007/s00299-023-03094-7
[77]

Zhang L, Zhang L, Xia C, Zhao G, Jia J, et al. 2015. The novel wheat transcription factor TaNAC47 enhances multiple abiotic stress tolerances in transgenic plants. Frontiers in Plant Science 6:1174

doi: 10.3389/fpls.2015.01174
[78]

Huang Q, Wang Y, Li B, Chang J, Chen M, et al. 2015. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biology 15:268

doi: 10.1186/s12870-015-0644-9
[79]

Mao X, Chen S, Li A, Zhai C, Jing R. 2014. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS One 9:e84359

doi: 10.1371/journal.pone.0084359
[80]

Xue GP, Way HM, Richardson T, Drenth J, Joyce PA, et al. 2011. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Molecular Plant 4:697−712

doi: 10.1093/mp/ssr013
[81]

Tang Y, Liu M, Gao S, Zhang Z, Zhao X, et al. 2012. Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiologia Plantarum 144:210−24

doi: 10.1111/j.1399-3054.2011.01539.x
[82]

Chen X, Wang Y, Lv B, Li J, Luo L, et al. 2014. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant and Cell Physiology 55:604−19

doi: 10.1093/pcp/pct204
[83]

Kadier Y, Zu YY, Dai QM, Song G, Lin SW, et al. 2017. Genome-wide identification, classification and expression analysis of NAC family of genes in sorghum [Sorghum bicolor (L.) Moench]. Plant Growth Regulation 83:301−12

doi: 10.1007/s10725-017-0295-y
[84]

Devkar V, Thirumalaikumar VP, Xue GP, Vallarino JG, Turečková V, et al. 2020. Multifaceted regulatory function of tomato SlTAF1 in the response to salinity stress. New Phytologist 225:1681−98

doi: 10.1111/nph.16247
[85]

Borgohain P, Saha B, Agrahari R, Chowardhara B, Sahoo S, et al. 2019. SlNAC2 overexpression in Arabidopsis results in enhanced abiotic stress tolerance with alteration in glutathione metabolism. Protoplasma 256:1065−77

doi: 10.1007/s00709-019-01368-0
[86]

Wang TT, Yu TF, Fu JD, Su HG, Chen J, et al. 2020. Genome-wide analysis of the GRAS gene family and functional identification of GmGRAS37 in drought and salt tolerance. Frontiers in Plant Science 11:604690

doi: 10.3389/fpls.2020.604690
[87]

Zhou L, Cao H, Zeng X, Wu Q, Li Q, et al. 2024. Oil palm AP2 subfamily gene EgAP2.25 improves salt stress tolerance in transgenic tobacco plants. International Journal of Molecular Sciences 25:5621

doi: 10.3390/ijms25115621
[88]

Wang H, Chen Z, Luo R, Lei C, Zhang M, et al. 2024. Caffeic acid O-methyltransferase gene family in mango (Mangifera indica L) with transcriptional analysis under biotic and abiotic stresses and the role of MiCOMT1 in salt tolerance. International Journal of Molecular Sciences 25:2639

doi: 10.3390/ijms25052639
[89]

Zhu Q, Zheng H, Hu X, Liu Y, Zheng X, et al. 2024. Genome-wide analysis of the SAUR gene family and its expression profiles in response to salt stress in Santalum album. Plants 13:1286

doi: 10.3390/plants13101286
[90]

Saidi A, Hajibarat Z, Hajibarat Z. 2021. Phylogeny, gene structure and GATA genes expression in different tissues of Solanaceae species. Biocatalysis and Agricultural Biotechnology 35:102015

doi: 10.1016/j.bcab.2021.102015
[91]

Lai D, Yao X, Yan J, Gao A, Yang H, et al. 2022. Genome-wide identification, phylogenetic and expression pattern analysis of GATA family genes in foxtail millet (Setaria italica). BMC Genomics 23:549

doi: 10.1186/s12864-022-08786-0
[92]

Jiang Y, Deyholos MK. 2006. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biology 6:25

doi: 10.1186/1471-2229-6-25
[93]

Trono D, Pecchioni N. 2022. Candidate genes associated with abiotic stress response in plants as tools to engineer tolerance to drought, salinity and extreme temperatures in wheat: an overview. Plants 11:3358

doi: 10.3390/plants11233358
[94]

Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, et al. 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell 16:2481−98

doi: 10.1105/tpc.104.022699
[95]

Yoon Y, Seo DH, Shin H, Kim HJ, Kim CM, et al. 2020. The role of stress-responsive transcription factors in modulating abiotic stress tolerance in plants. Agronomy 10:788

doi: 10.3390/agronomy10060788
[96]

Marè C, Zampieri E, Cavallaro V, Frouin J, Grenier C, et al. 2023. Marker-assisted introgression of the salinity tolerance locus saltol in temperate Japonica rice. Rice 16:2

doi: 10.1186/s12284-023-00619-2
[97]

Tiwari V, Charuvi D. 2021. Transgenic horticultural crops for combating abiotic stresses. In Stress Tolerance in Horticultural Crops, eds Rai AC, Rai A, Rai KK, Rai VP, Kumar A. UK: Woodhead Publishing. pp. 301−26 doi: 10.1016/C2019-0-05245-4

[98]

Meriç S, Ayan A, Atak Ç. 2021. Molecular abiotic stress tolerans strategies: from genetic engineering to genome editing era. In Abiotic Stress in Plants, eds Fahad S, Saud S, Chen Y, Wu C, Wang D. London: IntechOpen doi: 10.5772/intechopen.94505

[99]

Iranbakhsh A, Daneshmand F. 2021. Effect of salinity stress levels on some Growth parameters, Mineral ion concentration, Osmolytes, Non-enzymatic antioxidants and phenylalanine ammonialyase activity in three genotypes of (Chenopodium quinoa Willd). New Cellular and Molecular Biotechnology Journal 12:63−85

[100]

Xu Y, Zhao Y, Chen W, Sang X, Zhao P, et al. 2024. Roles of NAC transcription factors in cotton. Journal of Cotton Research 7:27

doi: 10.1186/s42397-024-00188-9
[101]

Ma HS, Liang D, Shuai P, Xia XL, Yin WL. 2010. The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. Journal of Experimental Botany 61:4011−19

doi: 10.1093/jxb/erq217
[102]

Yuan Y, Fang L, Karungo SK, Zhang L, Gao Y, et al. 2016. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. Plant Cell Reports 35:655−66

doi: 10.1007/s00299-015-1910-x
[103]

Shan Z, Luo X, Wu M, Wei L, Fan Z, et al. 2020. Genome-wide identification and expression of GRAS gene family members in cassava. BMC Plant Biology 20:46

doi: 10.1186/s12870-020-2242-8
[104]

Nazir F, Khan L, Umar S, Khan MIR. 2024. Omics-based strategies for improving salt tolerance in rice. In Current Omics Advancement in Plant Abiotic Stress Biology, eds Bhatt D, Nath M, Badoni S, Joshi R. US: Academic Press. pp. 63−70 doi: 10.1016/b978-0-443-21625-1.00005-1

[105]

Ben Gaied R, Brígido C, Sbissi I, Tarhouni M. 2024. Sustainable strategy to boost legumes growth under salinity and drought stress in semi-arid and arid regions. Soil Systems 8:84

doi: 10.3390/soilsystems8030084
[106]

Liu JN, Yan L, Chai Z, Liang Q, Dong Y, et al. 2025. Pan-genome analyses of 11 Fraxinus species provide insights into salt adaptation in ash trees. Plant Communications 6:101137

doi: 10.1016/j.xplc.2024.101137
[107]

Essemine J, Xu Z, Chen JT, Qu M. 2024. Bioinformatics as a powerful tool to foster plant science research and crop breeding through its involvement in a multidisciplinary research activity. Bioinformatics for Plant Research and Crop Breeding, ed. Chen JT. US: John Wiley & Sons Ltd. pp. 1−19 doi: 10.1002/9781394209965.ch1

[108]

Strosahl J, Ye K, Pazdro R. 2024. Novel insights into the pleiotropic health effects of growth differentiation factor 11 gained from genome-wide association studies in population biobanks. BMC Genomics 25:837

doi: 10.1186/s12864-024-10710-7
[109]

Vijai Selvaraj KS, Karthikeyan J, Bharathi A, Vethamoni PI, Rani CI, et al. 2025. Leveraging phenomics to enhance heat stress tolerance in tomato cultivars: a promising approach to climate change adaptation. Plant Physiology Reports 30:1−10

doi: 10.1007/s40502-025-00850-7
[110]

Sharma M, Sidhu AK, Samota MK, Shah P, Pandey MK, et al. 2024. Technological advancements in the CRISPR toolbox for improving plant salt tolerance. Discover Agriculture 2:102

doi: 10.1007/s44279-024-00105-3
[111]

Chen F, Chen L, Yan Z, Xu J, Feng L, et al. 2024. Recent advances of CRISPR-based genome editing for enhancing staple crops. Frontiers in Plant Science 15:1478398

doi: 10.3389/fpls.2024.1478398
[112]

Abdulraheem MI, Xiong Y, Moshood AY, Cadenas-Pliego G, Zhang H, et al. 2024. Mechanisms of plant epigenetic regulation in response to plant stress: recent discoveries and implications. Plants 13:163

doi: 10.3390/plants13020163
[113]

Yu J, Zhu C, Xuan W, An H, Tian Y, et al. 2023. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice. Nature Communications 14:3550

doi: 10.1038/s41467-023-39167-0
[114]

Wei H, Wang X, Zhang Z, Yang L, Zhang Q, et al. 2024. Uncovering key salt-tolerant regulators through a combined eQTL and GWAS analysis using the super pan-genome in rice. National Science Review 11:nwae043

doi: 10.1093/nsr/nwae043
[115]

Alam MS, Kong J, Tao R, Ahmed T, Alamin M, et al. 2022. CRISPR/Cas9 mediated knockout of the OsbHLH024 transcription factor improves salt stress resistance in rice (Oryza sativa L.). Plants 11:1184

doi: 10.3390/plants11091184
[116]

Wang T, Xun H, Wang W, Ding X, Tian H, et al. 2021. Mutation of GmAITR genes by CRISPR/Cas9 genome editing results in enhanced salinity stress tolerance in soybean. Frontiers in Plant Science 12:779598

doi: 10.3389/fpls.2021.779598
[117]

Khodabocus I, Li Q, Mehta D, Uhrig RG. 2021. A road map for undertaking quantitative proteomics in plants: new opportunities for cereal crops. In Accelerated Breeding of Cereal Crops, eds Bilichak A, Laurie JD. New York, NY: Springer. pp. 269−92 doi: 10.1007/978-1-0716-1526-3_14

[118]

Chauhan M, Kumar S, Biswas A, Kumar M, Verma SK, et al. 2024. A comprehensive review of the advancement in omic technologies in the field of drug discovery and development. Letters in Drug Design & Discovery 21:3319−31

doi: 10.2174/0115701808287654240126112003
[119]

Kashif MH, Wei F, Tang D, Tang M, Luo D, et al. 2020. iTRAQ-based comparative proteomic response analysis reveals regulatory pathways and divergent protein targets associated with salt-stress tolerance in kenaf (Hibiscus cannabinus L.). Industrial Crops and Products 153:112566

doi: 10.1016/j.indcrop.2020.112566
[120]

Ray S, Abraham J, Jordan N, Lindsay M, Chauhan N. 2022. Synthetic, photosynthetic, and chemical strategies to enhance carbon dioxide fixation. C 8:18

doi: 10.3390/c8010018
[121]

Arefian M, Vessal S, Malekzadeh-Shafaroudi S, Siddique KHM, Bagheri A. 2019. Comparative proteomics and gene expression analyses revealed responsive proteins and mechanisms for salt tolerance in chickpea genotypes. BMC Plant Biology 19:300

doi: 10.1186/s12870-019-1793-z
[122]

Li S, Khoso MA, Xu H, Zhang C, Liu Z, et al. 2024. WRKY transcription factors (TFs) as key regulators of plant resilience to environmental stresses: current perspective. Agronomy 14:2421

doi: 10.3390/agronomy14102421
[123]

Fu S, Wang L, Li C, Zhao Y, Zhang N, et al. 2024. Integrated transcriptomic, proteomic, and metabolomic analyses revealed molecular mechanism for salt resistance in soybean (Glycine max L.) seedlings. International Journal of Molecular Sciences 25:13559

doi: 10.3390/ijms252413559
[124]

Yadav P, Khatri N, Gupta R, Mudgil Y. 2024. Proteomic profiling of Arabidopsis G-protein β subunit AGB1 mutant under salt stress. Physiology and Molecular Biology of Plants 30:571−86

doi: 10.1007/s12298-024-01448-3