[1]

Anke T, Oberwinkler F, Steglich W, Schramm G. 1977. The strobilurins-new antifungal antibiotics from the basidiomycete Strobilurus tenacellus. The Journal of Antibiotics 30:806−810

doi: 10.7164/antibiotics.30.806
[2]

Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B. 2002. The strobilurin fungicides. Pest Management Science 58:649−662

doi: 10.1002/ps.520
[3]

Bartett DW, John M. Clough, Chris R. A. Godfrey, Jeremy R. Godwin, Alison A. Hall, et al. 2001. Understanding the strobilurin fungicides. Pesticide Outlook 12:143−148

doi: 10.1039/B106300F
[4]

Khandelwal A, Gupta S, Gajbhiye VT, Varghese E. 2014. Degradation of kresoxim-methyl in soil: Impact of varying moisture, organic matter, soil sterilization, soil type, light and atmospheric CO2 level. Chemosphere 111:209−217

doi: 10.1016/j.chemosphere.2014.03.044
[5]

Rodrigues ET, Lopes I, Pardal MÂ. 2013. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: A review. Environment International 53:18−28

doi: 10.1016/j.envint.2012.12.005
[6]

Feng Y, Huang Y, Zhan H, Bhatt P, Chen S. 2020. An overview of strobilurin fungicide degradation: current status and future perspective. Frontiers in Microbiology 11:1−11

doi: 10.3389/fmicb.2020.00389
[7]

Wang K, Sun Z, Yang L, He L, Li X, et al. 2020. Respiratory toxicity of azoxystrobin, pyraclostrobin and coumoxystrobin on chlorella vulgaris. Bulletin of Environmental Contamination and Toxicology 104:799−803

doi: 10.1007/s00128-020-02869-y
[8]

Wang X, Li X, Wang Y, Qin Y, Yan B, et al. 2021. A comprehensive review of strobilurin fungicide toxicity in aquatic species: emphasis on mode of action from the zebrafish model. Environmental Pollution 275:116671−116683

doi: 10.1016/j.envpol.2021.116671
[9]

Kumar N, Willis A, Satbhai K, Ramalingam L, Schmitt C, et al. 2020. Developmental toxicity in embryo-larval zebrafish (Danio rerio) exposed to strobilurin fungicides (azoxystrobin and pyraclostrobin). Chemosphere 241:124980

doi: 10.1016/j.chemosphere.2019.124980
[10]

Shin HM, Moschet C, Young TM, Bennett DH. 2019. Measured concentrations of consumer product chemicals in California house dust: Implications for sources, exposure, and toxicity potential. Indoor Air 30:60−75

doi: 10.1111/ina.12607
[11]

Cooper EM, Rushing R, Hoffman K, Phillips AL, Hammel SC, et al. 2020. Strobilurin fungicides in house dust: is wallboard a source? Journal of Exposure Science & Environmental Epidemiology 30:247−252

doi: 10.1038/s41370-019-0180-z
[12]

Balba H. 2007. Review of strobilurin fungicide chemicals. Journal of Environmental Science and Health, Part B 42:441−451

doi: 10.1080/03601230701316465
[13]

Kim JH, Campbell BC, Mahoney N, Chan KL, Molyneux RJ, et al. 2007. Enhanced activity of strobilurin and fludioxonil by using berberine and phenolic compounds to target fungal antioxidative stress response. Letters in Applied Microbiology 45:134−141

doi: 10.1111/j.1472-765X.2007.02159.x
[14]

Wania F. 2003. Assessing the potential of persistent organic chemicals for long-range transport and accumulation in polar regions. Environmental Science & Technology 27:1344−1351

doi: 10.1021/es026019e
[15]

Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FAPC. 2007. Food web–specific biomagnification of persistent organic pollutants. Science 317:236−239

doi: 10.1126/science.1138275
[16]

Zhang C, Zhou T, Xu Y, Du Z, Li B, et al. 2020. Ecotoxicology of strobilurin fungicides. Science of the Total Environment 742:140611−140623

doi: 10.1016/j.scitotenv.2020.140611
[17]

Mohapatra S, Siddamallaiah L, Matadha NY. 2021. Behavior of acetamiprid, azoxystrobin, pyraclostrobin, and lambda-cyhalothrin in/on pomegranate tissues. Environmental Science and Pollution Research 28:27481−27492

doi: 10.1007/s11356-021-12490-z
[18]

He L, He F, Yang S, Gao Y, Li B, et al. 2021. Dissipation kinetics and safety evaluation of pyraclostrobin and its desmethoxy metabolite BF 500-3 in a cucumber greenhouse agroecosystem. Environmental Science and Pollution Research 28:17712−17723

doi: 10.1007/s11356-020-11798-6
[19]

Gomes HdO, Cardoso RdS, da Costa JGM, Andrade da Silva VP, Nobre CdA, et al. 2021. Statistical evaluation of analytical curves for quantification of pesticides in bananas. Food Chemistry 345:128768

doi: 10.1016/j.foodchem.2020.128768
[20]

Li P, Sun P, Dong X, Li B. 2020. Residue analysis and kinetics modeling of thiophanate-methyl, carbendazim, tebuconazole and pyraclostrobin in apple tree bark using QuEChERS/HPLC–VWD. Biomedical Chromatography 34:e4851

doi: 10.1002/bmc.4851
[21]

Gao Y, Yang S, Li X, He L, Zhu J, et al. 2019. Residue determination of pyraclostrobin, picoxystrobin and its metabolite in pepper fruit via UPLC-MS/MS under open field conditions. Ecotoxicology and Environmental Safety 182:109445−109453

doi: 10.1016/j.ecoenv.2019.109445
[22]

Paramasivam M, Deepa M, Selvi C, Chandrasekaran S. 2017. Dissipation kinetics and safety evaluation of tebuconazole and trifloxystrobin in tea under tropical field conditions. Food Additives & Contaminants: Part A 34:2155−2163

doi: 10.1080/19440049.2017.1375606
[23]

Kang D, Zhang H, Chen Y, Wang F, Shi L, et al. 2017. Simultaneous determination of difenoconazole, trifloxystrobin and its metabolite trifloxystrobin acid residues in watermelon under field conditions by GC–MS/MS. Biomedical Chromatography 31:e3987

doi: 10.1002/bmc.3987
[24]

Peng W, Zhao L, Liu F, Xue J, Li H, et al. 2014. Effect of paste processing on residue levels of imidacloprid, pyraclostrobin, azoxystrobin and fipronil in winter jujube. Food Additives & Contaminants: Part A 31:1562−1567

doi: 10.1080/19440049.2014.941948
[25]

Li X, Li B, Chen M, Yan M, Cao X, et al. 2021. Preparation of magnetic zeolitic imidazolate framework-8 for magnetic solid-phase extraction of strobilurin fungicides from environmental water samples. Analytical Methods 13:2943−2950

doi: 10.1039/D1AY00645B
[26]

Li H, Yang S, Li T, Li X, Huang X, et al. 2020. Determination of pyraclostrobin dynamic residual distribution in tilapia tissues by UPLC-MS/MS under acute toxicity conditions. Ecotoxicology and Environmental Safety 206:111182

doi: 10.1016/j.ecoenv.2020.111182
[27]

Yusa V, Millet M, Coscolla C, Roca M. 2015. Analytical methods for human biomonitoring of pesticides. A review. Analytica Chimica Acta 891:15−31

doi: 10.1016/j.aca.2015.05.032
[28]

Gallo V, Tomai P, Gherardi M, Fanali C, De Gara L, et al. 2021. Dispersive liquid-liquid microextraction using a low transition temperature mixture and liquid chromatography-mass spectrometry analysis of pesticides in urine samples. Journal of Chromatography A 1642:462036

doi: 10.1016/j.chroma.2021.462036
[29]

Hu W, Liu CW, Jiménez JA, McCoy ES, Hsiao YC, et al. 2022. Detection of azoxystrobin fungicide and metabolite azoxystrobin-acid in pregnant women and children, estimation of daily intake, and evaluation of placental and lactational transfer in mice. Environmental Health Perspectives 130:027013−027022

doi: 10.1289/ehp9808
[30]

Chang C, Chen M, Gao J, Luo J, Wu K, et al. 2017. Current pesticide profiles in blood serum of adults in Jiangsu Province of China and a comparison with other countries. Environment International 102:213−222

doi: 10.1016/j.envint.2017.03.004
[31]

Flores JL, Díaz AM, Fernández de Córdova ML. 2007. Determination of azoxystrobin residues in grapes, musts and wines with a multicommuted flow-through optosensor implemented with photochemically induced fluorescence. Analytica Chimica Acta 585:185−191

doi: 10.1016/j.aca.2006.11.076
[32]

Guo X, Wang K, Chen GH, Shi J, Wu X, et al. 2017. Determination of strobilurin fungicide residues in fruits and vegetables by nonaqueous micellar electrokinetic capillary chromatography with indirect laser-induced fluorescence. Electrophoresis 38:2004−2010

doi: 10.1002/elps.201700060
[33]

Kolosova A, Maximova K, Eremin SA, Zherdev AV, Mercader JV, et al. 2017. Fluorescence polarisation immunoassays for strobilurin fungicides kresoxim-methyl, trifloxystrobin and picoxystrobin. Talanta: The International Journal of Pure and Applied Analytical Chemistry 162:495−504

doi: 10.1016/j.talanta.2016.10.063
[34]

Nogueira FdS, Araujo FM, De Faria LV, Lisboa TP, Azevedo GC, et al. 2020. Simultaneous determination of strobilurin fungicides residues in bean samples by HPLC-UV-AD using boron-doped diamond electrode. Talanta 216:120957

doi: 10.1016/j.talanta.2020.120957
[35]

Kwon CH, Lee YD, Im MH. 2011. Simultaneous determination of orysastrobin and its isomers in rice using HPLC-UV and LC-MS/MS. Journal of Agricultural and Food Chemistry 59:10826−10830

doi: 10.1021/jf202228p
[36]

Christensen HB, Granby K. 2001. Method validation for strobilurin fungicides in cereals and fruit. Food Additives & Contaminants 18:866−874

doi: 10.1080/02652030121435
[37]

Liu C, Qin D, Zhao Y, Pan C, Jiang S, et al. 2010. Famoxadone residue and dissipation in watermelon and soil. Ecotoxicology and Environmental Safety 73:183−188

doi: 10.1016/j.ecoenv.2009.08.003
[38]

Abdelraheem EMH, Hassan SM, Arief MMH, Mohammad SG. 2015. Validation of quantitative method for azoxystrobin residues in green beans and peas. Food Chemistry 182:246−250

doi: 10.1016/j.foodchem.2015.02.106
[39]

Jia L, Huang X, Zhao W, Wang H, Jing X. 2020. An effervescence tablet-assisted microextraction based on the solidification of deep eutectic solvents for the determination of strobilurin fungicides in water, juice, wine, and vinegar samples by HPLC. Food Chemistry 317:126424

doi: 10.1016/j.foodchem.2020.126424
[40]

Luo X, Qin X, Liu Z, Chen D, Yu W, et al. 2020. Determination, residue and risk assessment of trifloxystrobin, trifloxystrobin acid and tebuconazole in Chinese rice consumption. Biomedical Chromatography 34:e4694

doi: 10.1002/bmc.4694
[41]

Huang X, Du Z, Wu B, Jia L, Wang X, et al. 2020. Dispersive liquid–liquid microextraction based on the solidification of floating organic droplets for HPLC determination of three strobilurin fungicides in cereals. Food Additives & Contaminants: Part A 37:1279−1288

doi: 10.1080/19440049.2020.1758349
[42]

Xue J, Li H, Liu F, Jiang W, Chen X. 2014. Determination of strobilurin fungicides in cotton seed by combination of acetonitrile extraction and dispersive liquid-liquid microextraction coupled with gas chromatography. Journal of Separation Science 37:845−852

doi: 10.1002/jssc.201301223
[43]

de Melo Abreu S, Caboni P, Cabras P, Garau VL, Alves A. 2006. Validation and global uncertainty of a liquid chromatographic with diode array detection method for the screening of azoxystrobin, kresoxim-methyl, trifloxystrobin, famoxadone, pyraclostrobin and fenamidone in grapes and wine. Analytica Chimica Acta 573-574:291−297

doi: 10.1016/j.aca.2006.01.090
[44]

López-Ruiz R, Romero-González R, Garrido Frenich A. 2019. Residues and dissipation kinetics of famoxadone and its metabolites in environmental water and soil samples under different conditions. Environmental Pollution 252:163−170

doi: 10.1016/j.envpol.2019.05.123
[45]

Raina-Fulton R. 2015. Determination of neonicotinoid insecticides and strobilurin fungicides in particle phase atmospheric samples by liquid chromatography–tandem mass spectrometry. Journal of Agricultural and Food Chemistry 63:5152−5162

doi: 10.1021/acs.jafc.5b01347
[46]

Liu J, Wan Y, Jiang Y, Xia W, He Z, et al. 2022. Occurrence of azole and strobilurin fungicides in indoor dust from three cities of China. Environmental Pollution 304:119168

doi: 10.1016/j.envpol.2022.119168
[47]

Zubrod JP, Bundschuh M, Arts G, Brühl CA, Imfeld G, et al. 2019. Fungicides: an overlooked pesticide class? Environmental Science & Technology 53:3347−3365

doi: 10.1021/acs.est.8b04392
[48]

Berenzen N, Lentzen-Godding A, Probst M, Schulz H, Schulz R, et al. 2005. A comparison of predicted and measured levels of runoff-related pesticide concentrations in small lowland streams on a landscape level. Chemosphere 58:683−691

doi: 10.1016/j.chemosphere.2004.05.009
[49]

Reilly TJ, Smalling KL, Orlando JL, Kuivila KM. 2012. Occurrence of boscalid and other selected fungicides in surface water and groundwater in three targeted use areas in the United States. Chemosphere 89:228−234

doi: 10.1016/j.chemosphere.2012.04.023
[50]

Liu J, Xia W, Wan Y, Xu S. 2021. Azole and strobilurin fungicides in source, treated, and tap water from Wuhan, central China: Assessment of human exposure potential. Science of the Total Environment 801:149733

doi: 10.1016/j.scitotenv.2021.149733
[51]

Zhao Z, Sun R, Su Y, Hu J, Liu X. 2021. Fate, residues and dietary risk assessment of the fungicides epoxiconazole and pyraclostrobin in wheat in twelve different regions, China. Ecotoxicology and Environmental Safety 207:111236

doi: 10.1016/j.ecoenv.2020.111236
[52]

Hou Z, Wang X, Zhao X, Wang X, Yuan X, et al. 2016. Dissipation rates and residues of fungicide azoxystrobin in ginseng and soil at two different cultivated regions in China. Environmental Monitoring and Assessment 188:440

doi: 10.1007/s10661-016-5449-2
[53]

Hao F, Wang X, Ma F, Wang R, Dong F, et al. 2024. Transfer of pesticides and metabolites in corn: Production, processing, and livestock dietary burden. Science of the Total Environment 955:176932

doi: 10.1016/j.scitotenv.2024.176932
[54]

Wang B, Shi L, Ren P, Qin S, Li J, et al. 2024. Dissipation and dietary risk assessment of the fungicide pyraclostrobin in apples using ultra-high performance liquid chromatography–mass spectrometry. Molecules 29:4434−4444

doi: 10.3390/molecules29184434
[55]

Dost K, Öksüz M, Cittan M, Mutlu B, Tural B. 2023. Determination of boscalid, pyraclostrobin and trifloxystrobin in dried grape and apricot by HPLC/UV method. Journal of Food Composition and Analysis 115:104926

doi: 10.1016/j.jfca.2022.104926
[56]

Braun G, Sebesvari Z, Braun M, Kruse J, Amelung W, et al. 2018. Does sea-dyke construction affect the spatial distribution of pesticides in agricultural soils? – A case study from the Red River Delta, Vietnam. Environmental Pollution 243:890−899

doi: 10.1016/j.envpol.2018.09.050
[57]

Chau ND, Sebesvari Z, Amelung W, Renaud FG. 2015. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environmental Science and Pollution Research 22:9042−9058

doi: 10.1007/s11356-014-4034-x
[58]

Battaglin WA, Sandstrom MW, Kuivila KM, Kolpin DW, Meyer MT. 2010. Occurrence of azoxystrobin, propiconazole, and selected other fungicides in US streams, 2005–2006. Water, Air, & Soil Pollution 218:307−322

doi: 10.1007/s11270-010-0643-2
[59]

Wang Y, Wan Y, Li S, He Z, Xu S, et al. 2023. Occurrence, spatial variation, seasonal difference, and risk assessment of neonicotinoid insecticides, selected agriculture fungicides, and their transformation products in the Yangtze River, China: From the upper to lower reaches. Water Research 247:120724

doi: 10.1016/j.watres.2023.120724
[60]

Jamin EL, Bonvallot N, Tremblay-Franco M, Cravedi JP, Chevrier C, et al. 2014. Untargeted profiling of pesticide metabolites by LC-HRMS: an exposomics tool for human exposure evaluation. Analytical & Bioanalytical Chemistry 406:1149

doi: 10.1007/s00216-013-7136-2
[61]

Perez-Rodriguez V, Wu N, de la Cova A, Schmidt J, Denslow ND, Martyniuk CJ. 2020. The organochlorine pesticide toxaphene reduces non-mitochondrial respiration and induces heat shock protein 70 expression in early-staged zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 228:108669

doi: 10.1016/j.cbpc.2019.108669
[62]

Yang L, Huang T, Li R, Souders CL, Rheingold S, et al. 2021. Evaluation and comparison of the mitochondrial and developmental toxicity of three strobilurins in zebrafish embryo/larvae. Environmental Pollution 270:116277

doi: 10.1016/j.envpol.2020.116277
[63]

Cao F, Wu P, Huang L, Li H, Qian L, et al. 2018. Short-term developmental effects and potential mechanisms of azoxystrobin in larval and adult zebrafish (Danio rerio). Aquatic Toxicology 198:129−140

doi: 10.1016/j.aquatox.2018.02.023
[64]

Li H, Zhao F, Cao F, Teng M, Yang Y, et al. 2019. Mitochondrial dysfunction-based cardiotoxicity and neurotoxicity induced by pyraclostrobin in zebrafish larvae. Environmental Pollution 251:203−211

doi: 10.1016/j.envpol.2019.04.122
[65]

Jiang J, Wu S, Lv L, Liu X, Chen L, et al. 2019. Mitochondrial dysfunction, apoptosis and transcriptomic alterations induced by four strobilurins in zebrafish (Danio rerio) early life stages. Environmental Pollution 253:722−730

doi: 10.1016/j.envpol.2019.07.081
[66]

Huang X, Yang S, Li B, Wang A, Li H, et al. 2021. Comparative toxicity of multiple exposure routes of pyraclostrobin in adult zebrafish (Danio rerio). Science of the Total Environment 777:145957

doi: 10.1016/j.scitotenv.2021.145957
[67]

Liu L, Jiang C, Wu ZQ, Gong YX, Wang GX. 2013. Toxic effects of three strobilurins (trifloxystrobin, azoxystrobin and kresoxim-methyl) on mRNA expression and antioxidant enzymes in grass carp (Ctenopharyngodon idella) juveniles. Ecotoxicology and Environmental Safety 98:297−302

[68]

Gao AH, Fu YY, Zhang KZ, Zhang M, Jiang HW, et al. 2014. Azoxystrobin, a mitochondrial complex III Qo site inhibitor, exerts beneficial metabolic effects in vivo and in vitro. Biochimica et Biophysica Acta (BBA) - General Subjects 1840:2212−2221

doi: 10.1016/j.bbagen.2014.04.002
[69]

Flampouri E, Mavrikou S, Mouzaki-Paxinou AC, Kintzios S. 2016. Alterations of cellular redox homeostasis in cultured fibroblast-like renal cells upon exposure to low doses of cytochrome bc1 complex inhibitor kresoxim-methyl. Biochemical Pharmacology 113:97−109

doi: 10.1016/j.bcp.2016.06.002
[70]

Jang Y, Kim JE, Jeong SH, Paik MK, Kim JS, et al. 2016. Trifloxystrobin-induced mitophagy through mitochondrial damage in human skin keratinocytes. The Journal of Toxicological Sciences 41:731−737

doi: 10.2131/jts.41.731
[71]

Chen H, Li L, Lu Y, Shen Y, Zhang M, et al. 2020. Azoxystrobin reduces oral carcinogenesis by suppressing mitochondrial complex III activity and inducing apoptosis. Cancer Management and Research Volume 12:11573−11583

doi: 10.2147/CMAR.S280285
[72]

Shi XK, Bian XB, Huang T, Wen B, Zhao L, et al. 2017. Azoxystrobin induces apoptosis of human esophageal squamous cell carcinoma KYSE-150 cells through triggering of the mitochondrial pathway. Frontiers in Pharmacology 8:1−11

doi: 10.3389/fphar.2017.00277
[73]

Rodrigues ET, Pardal MÂ, Laizé V, Cancela ML, Oliveira PJ, et al. 2015. Cardiomyocyte H9c2 cells present a valuable alternative to fish lethal testing for azoxystrobin. Environmental Pollution 206:619−626

doi: 10.1016/j.envpol.2015.08.026
[74]

Ma J, Cheng C, Du Z, Li B, Wang J, et al. 2019. Toxicological effects of pyraclostrobin on the antioxidant defense system and DNA damage in earthworms (Eisenia fetida). Ecological Indicators 101:111−116

doi: 10.1016/j.ecolind.2019.01.015
[75]

Cao F, Li H, Zhao F, Wu P, Qian L, et al. 2019. Parental exposure to azoxystrobin causes developmental effects and disrupts gene expression in F1 embryonic zebrafish (Danio rerio). Science of the Total Environment 646:595−605

doi: 10.1016/j.scitotenv.2018.07.331
[76]

Zhu L, Wang H, Liu H, Li W. 2015. Effect of trifloxystrobin on hatching, survival, and gene expression of endocrine biomarkers in early life stages of medaka (Oryzias latipes). Environmental Toxicology 30:648−655

doi: 10.1002/tox.21942
[77]

Cui F, Chai T, Liu X, Wang C. 2017. Toxicity of three strobilurins (kresoxim-methyl, pyraclostrobin, and trifloxystrobin) on Daphnia magna. Environmental Toxicology and Chemistry 36:182−189

doi: 10.1002/etc.3520
[78]

Wu S, Lei L, Liu M, Song Y, Lu S, et al. 2018. Single and mixture toxicity of strobilurin and SDHI fungicides to Xenopus tropicalis embryos. Ecotoxicology and Environmental Safety 153:8−15

doi: 10.1016/j.ecoenv.2018.01.045
[79]

Pearson BL, Simon JM, McCoy ES, Salazar G, Fragola G, et al. 2016. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration. Nature Communications 7:11173

doi: 10.1038/ncomms11173
[80]

Regueiro J, Olguín N, Simal-Gándara J, Suñol C. 2015. Toxicity evaluation of new agricultural fungicides in primary cultured cortical neurons. Environmental Research 140:37−44

doi: 10.1016/j.envres.2015.03.013
[81]

Wu M, Bian J, Han S, Zhang C, Xu W, et al. 2023. Characterization of hepatotoxic effects induced by pyraclostrobin in human HepG2 cells and zebrafish larvae. Chemosphere 340:139732−139742

doi: 10.1016/j.chemosphere.2023.139732
[82]

Li SS, Tian XD, Song JK, Wu YD, Wang WL, et al. 2025. Network toxicological and molecular docking in investigating the mechanisms of toxicity of agricultural chemical pyraclostrobin. Ecotoxicology and Environmental Safety 297:118244−118255

doi: 10.1016/j.ecoenv.2025.118244
[83]

Boudina A, Emmelin C, Baaliouamer A, Païssé O, Chovelon JM. 2007. Photochemical transformation of azoxystrobin in aqueous solutions. Chemosphere 68:1280−1288

doi: 10.1016/j.chemosphere.2007.01.051
[84]

Wang C, Wu J, Zhang Y, Wang K, Zhang H. 2014. Field dissipation of trifloxystrobin and its metabolite trifloxystrobin acid in soil and apples. Environmental Monitoring and Assessment 187:4100

doi: 10.1007/s10661-014-4100-3
[85]

Adachi T, Suzuki Y, Nishiyama M, Kodaka R, Fujisawa T, et al. 2018. Photodegradation of strobilurin fungicide mandestrobin in water. Journal of Agricultural and Food Chemistry 66:8514−8521

doi: 10.1021/acs.jafc.8b03610
[86]

Lopes FM, Batista KA, Batista GLA, Mitidieri S, Bataus LAM, et al. 2009. Biodegradation of epoxyconazole and piraclostrobin fungicides by Klebsiella sp. from soil. World Journal of Microbiology and Biotechnology 26:1155−1161

doi: 10.1007/s11274-009-0283-0
[87]

Chen X, He S, Liang Z, Li QX, Yan H, et al. 2018. Biodegradation of pyraclostrobin by two microbial communities from Hawaiian soils and metabolic mechanism. Journal of Hazardous Materials 354:225−230

doi: 10.1016/j.jhazmat.2018.04.067
[88]

Howell CC, Semple KT, Bending GD. 2014. Isolation and characterisation of azoxystrobin degrading bacteria from soil. Chemosphere 95:370−378

doi: 10.1016/j.chemosphere.2013.09.048
[89]

Wang L, Zhao J, Delgado-Moreno L, Cheng J, Wang Y, et al. 2018. Degradation and metabolic profiling for benzene kresoxim-methyl using carbon-14 tracing. Science of the Total Environment 637-638: 1221-1229. https://doi.org/10.1016/j.scitotenv.2018.05.123

[90]

Yang L, Zeng J, Gao N, Zhu L, Feng J. 2024. Predicting the metal mixture toxicity with a toxicokinetic–toxicodynamic model considering the time-dependent adverse outcome pathways. Environmental Science & Technology 58:3714−3725

doi: 10.1021/acs.est.3c09857
[91]

Tan QG, Wang WX. 2012. Two-compartment toxicokinetic–toxicodynamic model to predict metal toxicity in daphnia magna. Environmental Science & Technology 46:9709−9715

doi: 10.1021/es301987u
[92]

Mukherjee RK, Kumar V, Roy K. 2021. Ecotoxicological QSTR and QSTTR modeling for the prediction of acute oral toxicity of pesticides against multiple avian species. Environmental Science & Technology 56:335−348

doi: 10.1021/acs.est.1c05732
[93]

Basant N, Gupta S, Singh KP. 2015. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches. Chemosphere 139:246−255

doi: 10.1016/j.chemosphere.2015.06.063