[1]

Gaines LGT. 2023. Historical and current usage of per- and polyfluoroalkyl substances (PFAS): A literature review. American Journal of Industrial Medicine 66:353−378

doi: 10.1002/ajim.23362
[2]

Rodgers KM, Swartz CH, Occhialini J, Bassignani P, McCurdy M, et al. 2022. How well do product labels indicate the presence of PFAS in consumer items used by children and adolescents? Environmental Science & Technology 56:6294−6304

doi: 10.1021/acs.est.1c05175
[3]

Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, et al. 2020. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental Science-Processes & Impacts 22:2345−2373

doi: 10.1039/d0em00291g
[4]

Averina M, Huber S, Almås B, Brox J, Jacobsen BK, et al. 2024. Early menarche and other endocrine disrupting effects of per- and polyfluoroalkyl substances (PFAS) in adolescents from Northern Norway. The Fit Futures study. Environmental Research 242

doi: 10.1016/j.envres.2023.117703
[5]

Caron-Beaudoin É, Ayotte P, Laouan Sidi EA, Gros-Louis McHugh N, Lemire M. 2019. Exposure to perfluoroalkyl substances (PFAS) and associations with thyroid parameters in First Nation children and youth from Quebec. Environment International 128:13−23

doi: 10.1016/j.envint.2019.04.029
[6]

Harris MH, Oken E, Rifas-Shiman SL, Calafat AM, Ye X, et al. 2018. Prenatal and childhood exposure to per-and polyfluoroalkyl substances (PFASs) and child cognition. Environment International 115:358−369

doi: 10.1016/j.envint.2018.03.025
[7]

Cookson ES, Detwiler RL. 2022. Global patterns and temporal trends of perfluoroalkyl substances in municipal wastewater: A meta-analysis. Water Research 221:118784

doi: 10.1016/j.watres.2022.118784
[8]

Ackerman Grunfeld D, Gilbert D, Hou J, Jones AM, Lee MJ, et al. 2024. Underestimated burden of per- and polyfluoroalkyl substances in global surface waters and groundwaters. Nature Geoscience 17:340−346

doi: 10.1038/s41561-024-01402-8
[9]

Topaz T, Gridish N, Sade T, Zedaka H, Suari Y, et al. 2024. Exploring per- and polyfluoroalkyl substances (PFAS) in microestuaries: occurrence, distribution, and risks. Environmental Science & Technology Letters 11:466−471

doi: 10.1021/acs.estlett.3c00882
[10]

Wang Q, Shao Y, Leung KMY, Lam PKS, Ruan Y. 2025. Per- and polyfluoroalkyl substances (PFAS) in the marine environment: An overview and prospects☆. Marine Pollution Bulletin 216:117993

doi: 10.1016/j.marpolbul.2025.117993
[11]

Christou A, Beretsou VG, Iakovides IC, Karaolia P, Michael C, et al. 2024. Sustainable wastewater reuse for agriculture. Nature Reviews Earth & Environment 5:504−521

doi: 10.1038/s43017-024-00560-y
[12]

Fini EH, Kazemi M, Poulikakos L, Lazorenko G, Akbarzade V, et al. 2024. Perspectives on innovative non-fertilizer applications of sewage sludge for mitigating environmental and health hazards. Communications Engineering 3:178

doi: 10.1038/s44172-024-00298-x
[13]

Chen H, Chow AT, Williams CF, Wang J, Sun W. 2025. Emerging contaminants in agroecosystems. Journal of Agricultural and Food Chemistry 73:11556−11558

doi: 10.1021/acs.jafc.5c02505
[14]

Lenka SP, Kah M, Chen JLY, Tiban-Anrango BA, Padhye LP. 2024. Adsorption mechanisms of short-chain and ultrashort-chain PFAS on anion exchange resins and activated carbon. Environmental Science-Water Research & Technology 10:1280−1293

doi: 10.1039/d3ew00959a
[15]

Gnesda WR, Draxler EF, Tinjum J, Zahasky C. 2022. Adsorption of PFAAs in the Vadose Zone and Implications for Long- Term Groundwater Contamination. Environmental Science & Technology 56:16748−16758

doi: 10.1021/acs.est.2c03962
[16]

Zeng J, Guo B. 2023. Reduced Accessible Air-Water Interfacial Area Accelerates PFAS Leaching in Heterogeneous Vadose Zones. Geophysical Research Letters 50

doi: 10.1029/2022GL102655
[17]

Du Z, Deng S, Bei Y, Huang Q, Wang B, et al. 2014. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents - a review. Journal of Hazardous Materials 274:443−454

doi: 10.1016/j.jhazmat.2014.04.038
[18]

Lath S, Navarro DA, Losic D, Kumar A, McLaughlin MJ. 2018. Sorptive remediation of perfluorooctanoic acid (PFOA) using mixed mineral and graphene/carbon-based materials. Environmental Chemistry 15:472−480

doi: 10.1071/en18156
[19]

Sharifan H, Bagheri M, Wang D, Burken JG, Higgins CP, et al. 2021. Fate and transport of per- and polyfluoroalkyl substances (PFASs) in the vadose zone. Science of the Total Environment 771

doi: 10.1016/j.scitotenv.2021.145427
[20]

Guo B, Zeng J, Brusseau ML, Zhang Y. 2022. A screening model for quantifying PFAS leaching in the vadose zone and mass discharge to groundwater. Advances in Water Resources 160

doi: 10.1016/j.advwatres.2021.104102
[21]

Zeng J, Brusseau ML, Guo B. 2024. Modeling PFAS subsurface transport in the presence of groundwater table fluctuations: the impact on source-zone leaching and exploration of model simplifications. Water Resources Research 60:e2024WR037707

doi: 10.1029/2024WR037707
[22]

Wang TT, Ying GG, Shi WJ, Zhao JL, Liu YS, et al. 2020. Uptake and translocation of perfluorooctanoic Acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by wetland plants: tissue- and cell-level distribution visualization with desorption electrospray ionization mass spectrometry (DESI-MS) and transmission electron microscopy equipped with energy-dispersive spectroscopy (TEM-EDS). Environmental Science & Technology 54:6009−6020

doi: 10.1021/acs.est.9b05160
[23]

van Dijk M, Morley T, Rau ML, Saghai Y. 2021. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010-2050. Nature Food 2:494−501

doi: 10.1038/s43016-021-00322-9
[24]

Costello MCS, Lee LS. 2024. Sources, fate, and plant uptake in agricultural systems of per- and polyfluoroalkyl substances. Current Pollution Reports 10:799−819

doi: 10.1007/s40726-020-00168-y
[25]

Oviedo-Vargas D, Anton J, Coleman-Kammula S, Qin X. 2025. Quantification of PFAS in soils treated with biosolids in ten northeastern US farms. Scientific Reports 15:5582

doi: 10.1038/s41598-025-90184-z
[26]

Peter LG, Lee LS. 2025. Sources and pathways of PFAS occurrence in water sources: relative contribution of land-applied biosolids in an agricultural dominated watershed. Environmental Science & Technology 59:1344−1353

doi: 10.1021/acs.est.4c09490
[27]

Borthakur A, Leonard J, Koutnik VS, Ravi S, Mohanty SK. 2022. Inhalation risks of wind-blown dust from biosolid-applied agricultural lands: Are they enriched with microplastics and PFAS? Current Opinion in Environmental Science & Health 25:100309

doi: 10.1016/j.coesh.2021.100309
[28]

Donley N, Cox C, Bennett K, Temkin AM, Andrews DQ, et al. 2024. Forever pesticides: a growing source of PFAS contamination in the environment. Environmental Health Perspectives 132:075003

doi: 10.1289/EHP13954
[29]

Nascimento RA, Nunoo DBO, Bizkarguenaga E, Schultes L, Zabaleta I, et al. 2018. Sulfluramid use in Brazilian agriculture: A source of per- and polyfluoroalkyl substances (PFASs) to the environment. Environmental Pollution 242:1436−1443

doi: 10.1016/j.envpol.2018.07.122
[30]

Diaz-Farina E, Díaz-Hernández JJ, Padrón-Fumero N. 2020. The contribution of tourism to municipal solid waste generation: a mixed demand-supply approach on the island of Tenerife. Waste Management 102:587−597

doi: 10.1016/j.wasman.2019.11.023
[31]

Yang X, Song C, Ren M, Kong Y, Cui X. 2025. Distribution patterns and influencing factors of PFAS in soils: A meta-analysis. Environmental Research 279:121806

doi: 10.1016/j.envres.2025.121806
[32]

Prasetya KD, You SJ, Ni'am AC, Wang YF. 2025. Water-based matrices thermal treatment for per- and polyfluoroalkyl substances (PFAS): a critical review on transformation mechanisms, role of radicals, and perspective towards. Journal of Hazardous Materials 495:138969

doi: 10.1016/j.jhazmat.2025.138969
[33]

Khair Biek S, Khudur LS, Ball AS. 2024. Challenges and remediation strategies for per- and polyfluoroalkyl substances (PFAS) contamination in composting. Sustainability 16:4745

doi: 10.3390/su16114745
[34]

Ren X, Zeng G, Tang L, Wang J, Wan J, et al. 2018. The potential impact on the biodegradation of organic pollutants from composting technology for soil remediation. Waste Management 72:138−149

doi: 10.1016/j.wasman.2017.11.032
[35]

Kaza S, Yao LC, Bhada Tata P, Van Woerden F, Martin TMR, et al. 2021. What a Waste 2.0: a global snapshot of solid waste management to 2050. Urban Development Series Washington, D.C.: World Bank Group. https://documents.worldbank.org/en/publication/documents-reports/documentdetail/697271544470229584/what-a-waste-2-0-a-global-snapshot-of-solid-waste-management-to-2050

[36]

German Federal Environment Agency. 2009. Do without perfluorinated chemicals and prevent their discharge into the environment. www.umweltbundesamt.de/en/publikationen/do-without-per-polyfluorinated-chemicals-prevent

[37]

Maine Department of Environmental Protection. 2024. An evaluation of biosolids management in Maine and recommendations for the future. Final report. United States. www.orono.org/DocumentCenter/View/12895/Biosolids-Evaluation

[38]

End of Waste Code Biosolids. 2020. The Queensland end of waste Code biosolids in 2020. https://info.awa.asn.au/

[39]

Liang Y, Yang L, Tang C, Yang Y, Liang S, et al. 2025. Broad-spectrum capture of hundreds of per- and polyfluoroalkyl substances from fluorochemical wastewater. Nature Communications 16:1972

doi: 10.1038/s41467-025-57272-0
[40]

Editorial team. 2025. The PFAS treatment evolution. Nature Water 3:633−633

doi: 10.1038/s44221-025-00458-z
[41]

Zhang K, Qadeer A, Chang S, Tu X, Shang H, et al. 2025. Short-chain PFASs dominance and their environmental transport dynamics in urban water systems: Insights from multimedia transport analysis and human exposure risk. Environment International 202:109602

doi: 10.1016/j.envint.2025.109602
[42]

UN - Water. 2024. Progress on Wastewater Treatment – 2024 Update. www.unwater.org/publications/progress-wastewater-treatment-2024-update

[43]

Tshangana CS, Nhlengethwa ST, Glass S, Denison S, Kuvarega AT, et al. 2025. Technology status to treat PFAS-contaminated water and limiting factors for their effective full-scale application. NPJ Clean Water 8:41

doi: 10.1038/s41545-025-00457-3
[44]

Wang Z, Jin X, Hong R, Wang X, Chen Z, et al. 2023. New indole derivative heterogeneous system for the synergistic reduction and oxidation of various per-/polyfluoroalkyl substances: insights into the degradation/defluorination mechanism. Environmental Science & Technology 57:21459−21469

doi: 10.1021/acs.est.3c05940
[45]

Zanetti R, Zanuncio JC, Santos JC, Da Silva WLP, Ribeiro GT, et al. 2014. An overview of integrated management of leaf-cutting ants (Hymenoptera: Formicidae) in Brazilian forest plantations. Forests 5:439−454

doi: 10.3390/f5030439
[46]

Barbosa Machado Torres F, Guida Y, Weber R, Machado Torres JP. 2022. Brazilian overview of per- and polyfluoroalkyl substances listed as persistent organic pollutants in the stockholm convention. Chemosphere 291:132674

doi: 10.1016/j.chemosphere.2021.132674
[47]

Brusseau ML. 2023. Differential sorption of short-chain versus long-chain anionic per- and poly-fluoroalkyl substances by soils. Environments - MDPI 10:175

doi: 10.3390/environments10100175
[48]

Lasee S, McDermett K, Kumar N, Guelfo J, Payton P, et al. 2022. Targeted analysis and Total Oxidizable Precursor assay of several insecticides for PFAS. Journal of Hazardous Materials Letters 3:100067

doi: 10.1016/j.hazl.2022.100067
[49]

Hunter Anderson R, Adamson DT, Stroo HF. 2019. Partitioning of poly- and perfluoroalkyl substances from soil to groundwater within aqueous film-forming foam source zones. Journal of Contaminant Hydrology 220:59−65

doi: 10.1016/j.jconhyd.2018.11.011
[50]

Brusseau ML. 2019. The influence of molecular structure on the adsorption of PFAS to fluid-fluid interfaces: Using QSPR to predict interfacial adsorption coefficients. Water Research 152:148−158

doi: 10.1016/j.watres.2018.12.057
[51]

Zeng J, Brusseau ML, Guo B. 2021. Model validation and analyses of parameter sensitivity and uncertainty for modeling long-term retention and leaching of PFAS in the vadose zone. Journal of Hydrology 603:127172

doi: 10.1016/j.jhydrol.2021.127172
[52]

Chen H, Munoz G, Duy SV, Zhang L, Yao Y, et al. 2020. Occurrence and distribution of per- and polyfluoroalkyl substances in Tianjin, China: the contribution of emerging and unknown analogues. Environmental Science & Technology 54:14254−14264

doi: 10.1021/acs.est.0c00934
[53]

Higgins CP, Luthy RG. 2006. Sorption of Perfluorinated Surfactants on Sediments. Environmental Science & Technology 40:7251−7256

doi: 10.1021/es061000n
[54]

Mejia-Avendaño S, Zhi Y, Yan B, Liu J. 2020. Sorption of polyfluoroalkyl surfactants on surface soils: effect of molecular structures, soil properties, and solution chemistry. Environmental Science & Technology 54:1513−1521

doi: 10.1021/acs.est.9b04989
[55]

Zhao X, Yang Y, Shen H, Geng X, Fang J. 2019. Global soil-climate-biome diagram: linking surface soil properties to climate and biota. Biogeosciences 16:2857−2871

doi: 10.5194/bg-16-2857-2019
[56]

Ke ZW, Wei SJ, Shen P, Chen YM, Li YC. 2023. Mechanism for the adsorption of per- and polyfluoroalkyl substances on kaolinite: Molecular dynamics modeling. Applied Clay Science 232:106804

doi: 10.1016/j.clay.2022.106804
[57]

Wang M, Orr AA, Jakubowski JM, Bird KE, Casey CM, et al. 2021. Enhanced adsorption of per- and polyfluoroalkyl substances (PFAS) by edible, nutrient-amended montmorillonite clays. Water Research 188:116534

doi: 10.1016/j.watres.2020.116534
[58]

Fan W, Dong S, Chen X, Su X, Yu Q, et al. 2025. Effects of soil components on microplastics transport and retention in natural soils: various microplastics types and sizes. Water Air and Soil Pollution 236:468

doi: 10.1007/s11270-025-08106-8
[59]

Malone BP, Searle R, Stenson M, McJannet D, Zund P, et al. 2025. Update and expansion of the soil and landscape grid of Australia. Geoderma 455:117226

doi: 10.1016/j.geoderma.2025.117226
[60]

Kim G, Mengesha DN, Choi Y. 2024. Adsorption dynamics of per- and polyfluoroalkyl substances (PFAS) on activated carbon: Interplay of surface chemistry and PFAS structural properties. Separation and Purification Technology 349:127851

doi: 10.1016/j.seppur.2024.127851
[61]

Bolan N, Sarkar B, Yan Y, Li Q, Wijesekara H, et al. 2021. Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils - To mobilize or to immobilize or to degrade? Journal of Hazardous Materials 401:123892

doi: 10.1016/j.jhazmat.2020.123892
[62]

Qi L, Li R, Wu Y, Lin X, Chen G. 2022. Effect of solution chemistry on the transport of short-chain and long-chain perfluoroalkyl carboxylic acids (PFCAs) in saturated porous media. Chemosphere 303:135160

doi: 10.1016/j.chemosphere.2022.135160
[63]

Niarchos G, Ahrens L, Kleja DB, Fagerlund F. 2022. Per- and polyfluoroalkyl substance (PFAS) retention by colloidal activated carbon (CAC) using dynamic column experiments. Environmental Pollution 308:119667

doi: 10.1016/j.envpol.2022.119667
[64]

Nguyen TMH, Bräunig J, Kookana RS, Kaserzon SL, Knight ER, et al. 2022. Assessment of mobilization potential of per- and polyfluoroalkyl substances for soil remediation. Environmental Science & Technology 56:10030−10041

doi: 10.1021/acs.est.2c00401
[65]

Xiao F, Jin B, Golovko SA, Golovko MY, Xing B. 2019. Sorption and desorption mechanisms of cationic and zwitterionic per- and polyfluoroalkyl substances in natural soils: thermodynamics and hysteresis. Environmental Science & Technology 53:11818−11827

doi: 10.1021/acs.est.9b05379
[66]

Nguyen TMH, Bräunig J, Thompson K, Thompson J, Kabiri S, et al. 2020. Influences of chemical properties, soil properties, and solution pH on soil-water partitioning coefficients of per- and polyfluoroalkyl substances (PFASs). Environmental Science & Technology 54:15883−15892

doi: 10.1021/acs.est.0c05705
[67]

Loganathan N, Schumm CE, O'Reilly MK, Wilson AK. 2025. Adsorption and dynamic characteristics of PFAS mixtures with kaolinite: molecular insights into the impact of chain length and functional group. Environmental Science & Technology 59:14637−14648

doi: 10.1021/acs.est.5c01046
[68]

Shen C, Jin Y, Zhuang J, Li T, Xing B. 2020. Role and importance of surface heterogeneities in transport of particles in saturated porous media. Critical Reviews in Environmental Science and Technology 50:244−329

doi: 10.1080/10643389.2019.1629800
[69]

Campos-Pereira H, Kleja DB, Sjöstedt C, Ahrens L, Klysubun W, et al. 2020. The adsorption of per- and polyfluoroalkyl substances (PFASs) onto ferrihydrite is governed by surface charge. Environmental Science & Technology 54:15722−15730

doi: 10.1021/acs.est.0c01646
[70]

Li Y, Zhi Y, Weed R, Broome SW, Knappe DRU, et al. 2024. Commercial compost amendments inhibit the bioavailability and plant uptake of per- and polyfluoroalkyl substances in soil-porewater-lettuce systems. Environment International 186:108615

doi: 10.1016/j.envint.2024.108615
[71]

Rovero M, Cutt D, Griffiths R, Filipowicz U, Mishkin K, et al. 2021. Limitations of current approaches for predicting groundwater vulnerability from PFAS contamination in the Vadose Zone. Groundwater Monitoring and Remediation 41:62−75

doi: 10.1111/gwmr.12485
[72]

Liu J, Lee LS, Nies LF, Nakatsu CH, Turco RF. 2007. Biotransformation of 8: 2 fluorotelomer alcohol in soil and by soil bacteria isolates. Environmental Science & Technology 41:8024−8030

doi: 10.1021/es0708722
[73]

Wang Q, Xu R, Zha F, Liu S, Yan H. 2025. Adsorption and diffusion of vapour-phase PFAS in montmorillonite and kaolinite: Effect of moisture content and chain length. Chemical Engineering Journal 517:164386

doi: 10.1016/j.cej.2025.164386
[74]

Weidemann E, Lämmer R, Göckener B, Bücking M, Gassmann M. 2024. Transformation, leaching and plant uptake simulations of 6: 2 and 8: 2 polyfluoroalkyl phosphate diesters (diPAPs) and related transformation products under near-natural conditions. Environmental Sciences Europe 36:63

doi: 10.1186/s12302-024-00883-z
[75]

Brusseau ML. 2019. Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per- and poly-fluoroalkyl substances. Environmental Pollution 254:113102

doi: 10.1016/j.envpol.2019.113102
[76]

Schaefer CE, Culina V, Nguyen D, Field J. 2019. Uptake of Poly- and Perfluoroalkyl Substances at the Air–Water Interface. Environmental Science & Technology 53:12442−12448

doi: 10.1021/acs.est.9b04008
[77]

Lyu Y, Brusseau ML, Chen W, Yan N, Fu X, et al. 2018. Adsorption of PFOA at the air–water interface during transport in unsaturated porous media. Environmental Science & Technology 52:7745−7753

doi: 10.1021/acs.est.8b02348
[78]

Silva JAK, Martin WA, Johnson JL, McCray JE. 2019. Evaluating air-water and NAPL-water interfacial adsorption and retention of Perfluorocarboxylic acids within the Vadose zone. Journal of Contaminant Hydrology 223:103472

doi: 10.1016/j.jconhyd.2019.03.004
[79]

Lyu Y, Brusseau ML. 2020. The influence of solution chemistry on air-water interfacial adsorption and transport of PFOA in unsaturated porous media. Science of the Total Environment 713:136744

doi: 10.1016/j.scitotenv.2020.136744
[80]

Silva JAK, Šimůnek J, McCray JE. 2022. Comparison of methods to estimate air-water interfacial areas for evaluating PFAS transport in the vadose zone. Journal of Contaminant Hydrology 247:103984

doi: 10.1016/j.jconhyd.2022.103984
[81]

Zhang W, Guo B. 2024. Anomalous adsorption of PFAS at the thin-water-film air-water interface in water-unsaturated porous media. Water Resources Research 60:e2023WR035775

doi: 10.1029/2023WR035775
[82]

Mudlaff M, Sosnowska A, Gorb L, Bulawska N, Jagiello K, et al. 2024. Environmental impact of PFAS: filling data gaps using theoretical quantum chemistry and QSPR modeling. Environment International 185:108568

doi: 10.1016/j.envint.2024.108568
[83]

Hodges G, Eadsforth C, Bossuyt B, Bouvy A, Enrici MH, et al. 2019. A comparison of log Kow (n-octanol-water partition coefficient) values for non-ionic, anionic, cationic and amphoteric surfactants determined using predictions and experimental methods. Environmental Sciences Europe 31:1−18

doi: 10.1186/s12302-018-0176-7
[84]

Biswas B, Joseph A, Parveen N, Ranjan VP, Goel S, et al. 2025. Contamination of per- and poly-fluoroalkyl substances in agricultural soils: a review. Journal of Environmental Management 380:124993

doi: 10.1016/j.jenvman.2025.124993
[85]

Nakayama T, Shinohara H, Tanaka M, Baba K, Ogawa-Ohnishi M, et al. 2017. A peptide hormone required for Casparian strip diffusion barrier formation in arabidopsis roots. Science 355:284−286

doi: 10.1126/science.aai9057
[86]

Liu Z, Lu Y, Song X, Jones K, Sweetman AJ, et al. 2019. Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: Implication for planting optimization and food safety. Environment International 127:671−684

doi: 10.1016/j.envint.2017.05.014
[87]

Müller CE, LeFevre GH, Timofte AE, Hussain FA, Sattely ES, et al. 2016. Competing mechanisms for perfluoroalkyl acid accumulation in plants revealed using an Arabidopsis model system. Environmental Toxicology and Chemistry 35:1138−1147

doi: 10.1002/etc.3251
[88]

Felizeter S, McLachlan MS, de Voogt P. 2012. Uptake of Perfluorinated Alkyl Acids by Hydroponically Grown Lettuce (Lactuca sativa). Environmental Science & Technology 46:11735−11743

doi: 10.1021/es302398u
[89]

Zhao S, Fang S, Zhu L, Liu L, Liu Z, et al. 2014. Mutual impacts of wheat (Triticum aestivum L.) and earthworms (Eisenia fetida) on the bioavailability of perfluoroalkyl substances (PFASs) in soil. Environmental Pollution 184:495−501

doi: 10.1016/j.envpol.2013.09.032
[90]

McDonough AM, Bird AW, Freeman LM, Luciani MA, Todd AK. 2021. Fate and budget of poly- and perfluoroalkyl substances in three common garden plants after experimental additions with contaminated river water. Environmental Pollution 285:117115

doi: 10.1016/j.envpol.2021.117115
[91]

Wang W, Yuan S, Kwon JH. 2022. Insight into the uptake and translocation of per- and polyfluoroalkyl substances in hydroponically grown lettuce. Environmental Science and Pollution Research 29:85454−85464

doi: 10.1007/s11356-022-21886-4
[92]

Lin Q, Zhou C, Chen L, Li Y, Huang X, et al. 2020. Accumulation and associated phytotoxicity of novel chlorinated polyfluorinated ether sulfonate in wheat seedlings. Chemosphere 249:126447

doi: 10.1016/j.chemosphere.2020.126447
[93]

Zhao S, Zhu L. 2017. Uptake and metabolism of 10:2 fluorotelomer alcohol in soil-earthworm (Eisenia fetida) and soil-wheat (Triticum aestivum L.) systems. Environmental Pollution 220:124−131

doi: 10.1016/j.envpol.2016.09.030
[94]

Tang T, Liu X, Wang L, Zuh AA, Qiao W, et al. 2020. Uptake, translocation and toxicity of chlorinated polyfluoroalkyl ether potassium sulfonate (F53B) and chromium co-contamination in water spinach (Ipomoea aquatica Forsk). Environmental Pollution 266:115385

doi: 10.1016/j.envpol.2020.115385
[95]

Li H, Sheng G, Chiou C, Xu O. 2005. Relation of organic contaminant equilibrium sorption and kinetic uptake in plants. Environmental Science & Technology 39:4864−4870

doi: 10.1021/es050424z
[96]

Wen B, Wu Y, Zhang H, Liu Y, Hu X, et al. 2016. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils. Environmental Pollution 216:682−688

doi: 10.1016/j.envpol.2016.06.032
[97]

Bagheri M, Al-jabery K, Wunsch D, Burken JG. 2020. Examining plant uptake and translocation of emerging contaminants using machine learning: Implications to food security. Science of the Total Environment 698:133999

doi: 10.1016/j.scitotenv.2019.133999
[98]

Yu PF, Xiang L, Li XH, Ding ZR, Mo CH, et al. 2018. Cultivar-dependent accumulation and translocation of perfluorooctanesulfonate among lettuce (Lactuca sativa L.) cultivars grown on perfluorooctanesulfonate-contaminated soil. Journal of Agricultural and Food Chemistry 66:13096−13106

doi: 10.1021/acs.jafc.8b04548
[99]

Abid M, Ali S, Qi LK, Zahoor R, Tian Z, et al. 2018. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports 8:4615

doi: 10.1038/s41598-018-21441-7
[100]

Hajihashemi S, Kazemi S. 2022. The potential of foliar application of nano-chitosan-encapsulated nano-silicon donor in amelioration the adverse effect of salinity in the wheat plant. BMC Plant Biology 22:148

doi: 10.1186/s12870-022-03531-x
[101]

Shen L, Zhou J, Ma Y, Su Q, Mao H, et al. 2024. Characterization of the bioavailability of per- and polyfluoroalkyl substances in farmland soils and the factors impacting their translocation to edible plant tissues. Environmental Science & Technology 58:15790−15798

doi: 10.1021/acs.est.4c04009
[102]

Yu PF, Li YW, Zou LJ, Liu BL, Xiang L, et al. 2021. Variety-selective rhizospheric activation, uptake, and subcellular distribution of perfluorooctanesulfonate (PFOS) in lettuce (Lactuca sativa L.). Environmental Science & Technology 55:8730−8741

doi: 10.1021/acs.est.1c01175
[103]

Krippner J, Brunn H, Falk S, Georgii S, Schubert S, et al. 2014. Effects of chain length and pH on the uptake and distribution of perfluoroalkyl substances in maize (Zea mays). Chemosphere 94:85−90

doi: 10.1016/j.chemosphere.2013.09.018
[104]

Zhao H, Qu B, Guan Y, Jiang J, Chen X. 2016. Influence of salinity and temperature on uptake of perfluorinated carboxylic acids (PFCAs) by hydroponically grown wheat (Triticum aestivum L.). SpringerPlus 5:541

doi: 10.1186/s40064-016-2016-9
[105]

Blaine AC, Rich CD, Sedlacko EM, Hyland KC, Stushnoff C, et al. 2014. Perfluoroalkyl acid uptake in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa) irrigated with reclaimed water. Environmental Science & Technology 48:14361−14368

doi: 10.1021/es504150h
[106]

Liu S, Liu Z, Tan W, Johnson AC, Sweetman AJ, et al. 2023. Transport and transformation of perfluoroalkyl acids, isomer profiles, novel alternatives and unknown precursors from factories to dinner plates in China: new insights into crop bioaccumulation prediction and risk assessment. Environment International 172:107795

doi: 10.1016/j.envint.2023.107795
[107]

Bizkarguenaga E, Zabaleta I, Prieto A, Fernández LA, Zuloaga O. 2016. Uptake of 8: 2 perfluoroalkyl phosphate diester and its degradation products by carrot and lettuce from compost-amended soil. Chemosphere 152:309

doi: 10.1016/j.chemosphere.2016.02.130
[108]

FAO. 2025. Value of agricultural production. www.fao.org/faostat/en/#data/QV

[109]

Evich MG, Ferreira J, Adeyemi O, Schroeder PA, Williams JC, et al. 2025. Mineralogical controls on PFAS and anthropogenic anions in subsurface soils and aquifers. Nature Communications 16:3118

doi: 10.1038/s41467-025-58040-w