[1]

Di DW, Zhang C, Luo P, An CW, Guo GQ. 2016. The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regulation 78:275−85

doi: 10.1007/s10725-015-0103-5
[2]

Vanneste S, Pei Y, Friml J. 2025. Mechanisms of auxin action in plant growth and development. Nature Reviews Molecular Cell Biology 26:648−66

doi: 10.1038/s41580-025-00851-2
[3]

Luo P, Di DW. 2023. Precise regulation of the TAA1/TAR-YUCCA auxin biosynthesis pathway in plants. International Journal of Molecular Sciences 24:8514

doi: 10.3390/ijms24108514
[4]

Luo P, Li TT, Shi WM, Ma Q, Di DW. 2023. The roles of GRETCHEN HAGEN3 (GH3)-dependent auxin conjugation in the regulation of plant development and stress adaptation. Plants 12:4111

doi: 10.3390/plants12244111
[5]

Zheng N, Tan X, Caldeon-Villalobos LIA, Estelle M. 2008. Mechanism of auxin perception by the SCF-TIR1 ubiquitin ligase. The FASEB Journal 22:260.1

doi: 10.1096/fasebj.22.2_supplement.260
[6]

Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, et al. 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640−45

doi: 10.1038/nature05731
[7]

Xu T, Dai N, Chen J, Nagawa S, Cao M, et al. 2014. Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343:1025−28

doi: 10.1126/science.1245125
[8]

Friml J, Gallei M, Gelová Z, Johnson A, Mazur E, et al. 2022. ABP1–TMK auxin perception for global phosphorylation and auxin canalization. Nature 609:575−81

doi: 10.1038/s41586-022-05187-x
[9]

Wang JL, Wang M, Zhang L, Li YX, Li JJ, et al. 2024. WAV E3 ubiquitin ligases mediate degradation of IAA32/34 in the TMK1-mediated auxin signaling pathway during apical hook development. Proceedings of the National Academy of Sciences of the United States of America 121:e2314353121

doi: 10.1073/pnas.2314353121
[10]

Wang R, Estelle M. 2014. Diversity and specificity: auxin perception and signaling through the TIR1/AFB pathway. Current Opinion in Plant Biology 21:51−58

doi: 10.1016/j.pbi.2014.06.006
[11]

Chen H, Qi L, Zou M, Lu M, Kwiatkowski M, et al. 2025. TIR1-produced cAMP as a second messenger in transcriptional auxin signalling. Nature 640:1011−16

doi: 10.1038/s41586-025-08669-w
[12]

Qi L, Kwiatkowski M, Chen H, Hoermayer L, Sinclair S, et al. 2022. Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature 611:133−38

doi: 10.1038/s41586-022-05369-7
[13]

Yu Z, Zhang F, Friml J, Ding Z. 2022. Auxin signaling: research advances over the past 30 years. Journal of Integrative Plant Biology 64:371−92

doi: 10.1111/jipb.13225
[14]

Weijers D, Wagner D. 2016. Transcriptional responses to the auxin hormone. Annual Review of Plant Biology 67:539−74

doi: 10.1146/annurev-arplant-043015-112122
[15]

Abel S, Oeller PW, Theologis A. 1994. Early auxin-induced genes encode short-lived nuclear proteins. Proceedings of the National Academy of Sciences of the United States of America 91:326−30

doi: 10.1073/pnas.91.1.326
[16]

Ma Q, Grones P, Robert S. 2018. Auxin signaling: a big question to be addressed by small molecules. Journal of Experimental Botany 69:313−28

doi: 10.1093/jxb/erx375
[17]

Plant AR, Larrieu A, Causier B. 2021. Repressor for hire! The vital roles of TOPLESS-mediated transcriptional repression in plants. New Phytologist 231:963−73

doi: 10.1111/nph.17428
[18]

Chapman EJ, Estelle M. 2009. Mechanism of auxin-regulated gene expression in plants. Annual Review of Genetics 43:265−85

doi: 10.1146/annurev-genet-102108-134148
[19]

Ramos JA, Zenser N, Leyser O, Callis J. 2001. Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. The Plant Cell 13:2349−60

doi: 10.1105/tpc.010244
[20]

Guilfoyle TJ. 2015. The PB1 domain in auxin response factor and Aux/IAA proteins: a versatile protein interaction module in the auxin response. The Plant Cell 27:33−43

doi: 10.1105/tpc.114.132753
[21]

Guilfoyle TJ, Hagen G. 2007. Auxin response factors. Current Opinion in Plant Biology 10:453−60

doi: 10.1016/j.pbi.2007.08.014
[22]

Tiwari SB, Hagen G, Guilfoyle T. 2003. The roles of auxin response factor domains in auxin-responsive transcription. The Plant Cell 15:533−43

doi: 10.1105/tpc.008417
[23]

Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, et al. 2011. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Molecular Systems Biology 7:508

doi: 10.1038/msb.2011.39
[24]

Causier B, Ashworth M, Guo W, Davies B. 2012. The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiology 158:423−38

doi: 10.1104/pp.111.186999
[25]

Kuhn A, Harborough SR, McLaughlin HM, Natarajan B, Verstraeten I, et al. 2020. Direct ETTIN-auxin interaction controls chromatin states in gynoecium development. eLife 9:e51787

doi: 10.7554/eLife.51787
[26]

Li L, Verstraeten I, Roosjen M, Takahashi K, Rodriguez L, et al. 2021. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature 599:273−77

doi: 10.1038/s41586-021-04037-6
[27]

Gehring C. 2010. Adenyl cyclases and cAMP in plant signaling - past and present. Cell Communication and Signaling 8:15

doi: 10.1186/1478-811X-8-15
[28]

Yapa MM, Yu P, Liao F, Moore AG, Hua Z. 2020. Generation of a fertile ask1 mutant uncovers a comprehensive set of SCF-mediated intracellular functions. The Plant Journal 104:493−509

doi: 10.1111/tpj.14939
[29]

Leyser HMO, Pickett FB, Dharmasiri S, Estelle M. 1996. Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. The Plant Journal 10:403−13

doi: 10.1046/j.1365-313x.1996.10030403.x
[30]

Jin XC, Wu WH. 1999. Involvement of cyclic AMP in ABA- and Ca2−-mediated signal transduction of stomatal regulation in Vicia faba. Plant and Cell Physiology 40:1127−33

doi: 10.1093/oxfordjournals.pcp.a029497
[31]

Hall KA, Galsky AG. 1973. The action of cyclic-AMP on GA3 controlled responses IV. Characteristics of the promotion of seed germination in Lactuca sative variety 'Spartan Lake' by gibberellic acid and cyclic 3,5'-adenosine monophosphate. Plant and Cell Physiology 14:565−71

doi: 10.1093/oxfordjournals.pcp.a074892
[32]

Thomas L, Marondedze C, Ederli L, Pasqualini S, Gehring C. 2013. Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thaliana. Journal of Proteomics 83:47−59

doi: 10.1016/j.jprot.2013.02.032
[33]

Jiang J, Fan LW, Wu WH. 2005. Evidences for involvement of endogenous cAMP in Arabidopsis defense responses to Verticillium toxins. Cell Research 15:585−92

doi: 10.1038/sj.cr.7290328
[34]

Lu M, Zhang Y, Tang S, Pan J, Yu Y, et al. 2016. AtCNGC2 is involved in jasmonic acid-induced calcium mobilization. Journal of Experimental Botany 67:809−19

doi: 10.1093/jxb/erv500
[35]

Uematsu K, Fukui Y. 2008. Role and regulation of cAMP in seed germination of Phacelia tanacetifolia. Plant Physiology and Biochemistry 46:768−74

doi: 10.1016/j.plaphy.2007.10.015
[36]

Azhar S, Krishna Murti CR. 1971. Effect of indole-3-acetic acid on synthesis of cyclic 3'–5' adenosine phosphate by bengal gram seeds. Biochemical and Biophysical Research Communications 43:58−64

doi: 10.1016/S0006-291X(71)80085-2
[37]

Salomon D, Mascarenhas JP. 1971. Auxin-induced synthesis of cyclic 3',5'-adenosine monophosphate in avena coleoptiles. Life Sciences 10:879−85

doi: 10.1016/0024-3205(71)90200-1
[38]

Li T, Jia W, Peng S, Guo Y, Liu J, et al. 2024. Endogenous cAMP elevation in Brassica napus causes changes in phytohormone levels. Plant Signaling & Behavior 19:2310963

doi: 10.1080/15592324.2024.2310963
[39]

Xu R, Guo Y, Peng S, Liu J, Li P, et al. 2021. Molecular targets and biological functions of cAMP signaling in Arabidopsis. Biomolecules 11:688

doi: 10.3390/biom11050688
[40]

Domingo G, Marsoni M, Chiodaroli L, Fortunato S, Bracale M, et al. 2023. Quantitative phosphoproteomics reveals novel roles of cAMP in plants. Proteomics 23:e2300165

doi: 10.1002/pmic.202300165
[41]

Weiste C, Dröge-Laser W. 2014. The Arabidopsis transcription factor bZIP11 activates auxin-mediated transcription by recruiting the histone acetylation machinery. Nature Communications 5:3883

doi: 10.1038/ncomms4883
[42]

Wu MF, Yamaguchi N, Xiao J, Bargmann B, Estelle M, et al. 2015. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. eLife 4:e09269

doi: 10.7554/eLife.09269